Solutions to Midterm 2

Problem 1 (20 pts). Consider the circle S^1 and the intervals (0,1), (0,1], [0,1), and [0,1]. Which of these spaces are homeomorphic? Why?

Solution: [0,1) and (0,1] are homeomorphic via $x \mapsto 1-x$. Other pairs are not homeomorphic. For a topological space X denote by N(X) the set of its nonseparating points, i.e., points $x_0 \in X$ such that $X \setminus \{x_0\}$ is connected. Clearly, N(X) is a topological invariant. On the other hand, one has $N(S^1) = S^1$, $N(0,1) = \emptyset$, N(0,1] = N[0,1) = point, and N[0,1] = two points; they are all distinct.

Problem 2 (15 + 15 pts).

- (1) Show that a connected normal space with more than one point is uncountable.
- (2) Show that a connected regular space with more than one point is uncountable.

(*Hint for* (2): any countable space is Lindelöf.)

Solution: (1) Let X be normal. Pick two distinct points $x, y \in X$. There is a Urysohn function $f: X \to I$ with f(x) = 0 and f(y) = 1. Since X is connected, so is f(X); connected subspaces of \mathbb{R} are intervals; hence, $f(X) \supset I$ is uncountable and so is X.

(2) Let X be regular. If it is countable, it is Lindelöf and, hence, normal, which contradicts to (1). \Box

Problem 3 (20 pts). Show that if $A \subset \mathbb{R}^2$ is countable, then $\mathbb{R}^2 \setminus A$ is path connected. Use this result to prove that \mathbb{R}^2 is not homeomorphic to \mathbb{R} .

Solution: Pick $x, y \in \mathbb{R} \setminus A$. There are uncountably many lines through x; hence, there is a line $l \subset \mathbb{R} \setminus A$ through x. There are uncountably many lines through y not parallel to l; hence, there is a line $m \subset \mathbb{R} \setminus A$ through y not parallel to l. Then x and y belong to a path connected subspace $l \cup m \subset \mathbb{R} \setminus A$.

If $f : \mathbb{R} \to \mathbb{R}^2$ is a homeomorphism, so is its restriction $\mathbb{R} \setminus \{0\} \to \mathbb{R}^2 \setminus \{f(0)\}$. However, the former space is disconnected and the latter, connected. \Box

Problem 4 (Weierstraß theorems) (10 + 10 pts). Let X be a topological space and $f: X \to \mathbb{R}$ a continuous function.

- (1) (Intermediate value theorem.) Assume that X is connected, $a, b \in X$ are two points with $f(a) \leq f(b)$, and $C \in \mathbb{R}$ is a number such that $f(a) \leq C \leq f(b)$. Show that there is a point $c \in X$ such that f(c) = C.
- (2) Show that if X is compact, then f is bounded and attains its minimal and maximal values.

Solution: (1) A continuous image of a connected space is connected. Hence, $f(X) \supset [a,b] \ni c$.

(2) A continuous image of a compact space is compact; hence, f(X) is compact and, thus, bounded and closed. This means that $\sup f(X) < \infty$ and $f(X) \ni \sup f(X)$, and $\inf f(X) > -\infty$ and $f(X) \ni \inf f(X)$. \Box