Math 411, Spring 1997

Solutions to the Final Exam

Problem 1. Does there exist a continuous map $D^2 \rightarrow \partial D^2 = S^1$?

Solution: There sure does. Just map D^2 to a single point in S^1 .

Problem 2. Find the fundamental group of a punctured real projective plane (i.e., real projective plane with a small open disk removed from it).

Solution: Punctured $\mathbb{R}p^2$ is homeomorphic to the Möbius band, which, in turn, is homotopy equivalent to S^1 . Hence, $\pi_1 = \mathbb{Z}$.

Problem 3. (Oh, my God!) Give the **homotopy** classification of latin letters. (As usual, use Computer modern sans serif font):

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

(Do not construct homotopy equivalences explicitly. Just explain why you think spaces are homotopy equivalent.)

Solution: Here are the classes:

Ν	Class	Homotopy type	$\pi_1(X)$
1	ADOPQR	S^1	Z
2	В	$S^1 \vee S^1$	$\mathbb{Z} * \mathbb{Z}$ (free product)
3	C E F G H I J K L M N S T U V W X Y Z	pt	{1}

Classes are distinguished by their fundamental groups. Homotopy equivalences can be constructed as follows. Consider, for example, the letter A, which is S^1 with two segments attached. Each segment retracts to its end attached to the circle, and there is a homotopy between the retraction and identity map which is identity on that end. Hence, both the retraction and homotopy extend to the whole space and give a homotopy equivalence $A \to S^1$. (The homotopy inverse map is the inclusion $S^1 \hookrightarrow A$.)

Problem 4. Let $A \subset X$ be a subspace, in: $A \to X$ the inclusion, and $a \in A$ a point.

- (1) Does in_{*}: $\pi_1(A, a) \to \pi_1(X, a)$ need to be a monomorphism?
- (2) The same question assuming that A is a retract of X.

Solution: (1) No. E.g., $A = S^1 \subset X = D^2$, with $in_* : \mathbb{Z} \to 0$.

(2) Yes. Let $\rho: X \to A$ be a retraction. Then $\rho \circ in = id_A$ and, hence, $\rho_* \circ in_* = (\rho \circ in)_* = id$. Hence, Ker $in_* \subset \text{Ker}(\rho_* \circ in_*) = \{1\}$ and in_* is a monomorphism.