Solutions to the Second Midterm

Problem 1. Is there a two point compactification of an open disk? More precisely, does there exist a compact Hausdorff space X such that:
(1) X contains a dense subspace A homeomorphic to an open disk;
(2) $X \backslash A$ consists of two points?
(Hint: X should be Hausdorff. If you cannot give a rigorous proof, which is a bit hard, though welcome, try to explain your opinion.)

Solution: No, there isn't. Suppose X is such a space, and ∞_{1}, ∞_{2} are the two points of $X \backslash A$. We will prove that these two points cannot be separated (and, hence, X is not Hausdorff). Let U_{1}, U_{2} be some disjoint neighborhood of ∞_{1}, ∞_{2}, respectively. Eventually, we are going to prove that this assumption contradicts to the connectedness of the "boundary" of A. Put $F_{i}=A \backslash U_{i}$. Then $F_{1} \cap F_{2}=\left(X \backslash U_{1}\right) \cap\left(X \backslash U_{2}\right)$ is closed in X, hence compact, and $F_{1} \cup F_{2}=A$ (since U_{1}, U_{2} are disjoint). Besides, neither of the F_{i} 's is compact. (Indeed, suppose that, say, F_{1} is compact, hence closed in X. Then, since A is dense, we have: $\mathrm{Cl} A=\mathrm{Cl}\left(F_{1} \cup F_{2}\right)=F_{1} \cup \mathrm{Cl} F_{2}=X$, i.e., $\infty_{1}, \infty_{2} \in \mathrm{Cl} F_{2}$ and $U_{2} \subset X \backslash \mathrm{Cl} F_{2}$ does not contain ∞_{2}.) Thus, we represented A, which we now regard as the standard open unit disk in \mathbb{R}^{2}, as the union of two closed noncompact subsets with compact intersection. Let $S^{1}=\partial A$ (in \mathbb{R}^{2}). Since $F_{1} \cap F_{2}$ is compact (and, in particular, closed in $\left.\mathbb{R}^{2}\right)$, $\operatorname{dist}\left(F_{1} \cap F_{2}, S^{1}\right)=\varepsilon>0$. Let B be the annulus $\left\{\mathbf{x} \in \mathbb{R}^{2}|1-\varepsilon / 2<|\mathbf{x}|<1\}\right.$. It is connected, but, on the other hand, it is disjoint union of two non-empty closed sets $F_{1} \cap B$ and $F_{2} \cap B$. (The sets are disjoint because, by our construction, $F_{1} \cap F_{2} \cap B=\varnothing$, and they are non-empty since any closed set that lies entirely in $A \backslash B$ should be compact.) This is a contradiction.

Problem 2. Let X be a topological space. Two points $x, y \in X$ are said to lie in the same quasicomponent of X if there is no separation $X=A \cup B$ of X into two disjoint nonempty open sets with $x \in A$ and $y \in B$.
(1) Show that 'to lie in the same quasicomponent' is an equivalence relation and, thus, X splits into disjoint union of quasicomponents.
(2) Show that each component of X belongs to a quasicomponent.
(3) Show that the quasicomponent of a point $x \in X$ is the intersection of all open-closed subsets containing x.
(4) Does a quasicomponent need to be closed? Open? Why?

Solution: (1) Reflexivity and symmetricity are obvious. For the transitivity assume that $x \sim y, y \sim z$, and there is a separation $X=A \cup B$ with $x \in A$ and $z \in B$. Then either $y \in A$ and, hence, $x \nsim y$, or $y \in B$ and, hence, $y \nsim z$.
(2) Let C be a component, $x, y \in C$, and $x \nsim y$. Then there is a separation $X=A \cup B$ with $x \in A$ and $y \in B$, and $C \cap A$ and $C \cap B$ form a separation of C, which, thus, is not connected.
(3) Let Q be a quasicomponent, $x \in Q$, and A_{α} all open-closed sets containing x. If $Q \not \subset A_{\alpha}$ for some α, then $X=A_{\alpha} \cup\left(X \backslash A_{\alpha}\right)$ is a separation of X such that $Q \cap\left(X \backslash A_{\alpha}\right)$ is not empty, and for any point $y \in Q \cap\left(X \backslash A_{\alpha}\right)$ one has $x \nsim y$. Conversely, let $y \in \bigcap_{\alpha} A_{\alpha}$ and $y \nsim x$. Then there is a separation $X=A \cup B$ with $x \in A$ and $y \notin A$. But A is open-closed, i.e., one of A_{α}.
(4) Due to (3) a quasicomponent is closed as intersection of closed sets. It does not need to be open: say, the quasicomponents of \mathbb{Q} are single points. (Why?)

Problem 3. True or false: the intersection $A=\bigcap_{i=1}^{\infty} A_{i}$ of a decreasing sequence $A_{1} \supset A_{2} \supset \ldots \supset A_{n} \supset \ldots$ of connected subsets of a topological space is connected?
Solution: The statement is false. Let $A_{n}=\mathbb{R}^{2} \backslash B_{n}$, where $B_{n}=\left\{(x, y) \in \mathbb{R}^{2} \mid-1<x<1, y>n\right\}$. Then all A_{n} are connected, $A_{n} \supset A_{n+1}$, and $\bigcap_{n} A_{n}=\left\{(x, y) \in \mathbb{R}^{2} \mid x \geqslant 1\right.$ or $\left.x \leqslant-1\right\}$, which is disconnected.

