## Solutions to the First Midterm

Problem 1. (1) Let $\mathbb{Q} \subset \mathbb{R}$ be the set of rationals ( $\mathbb{R}$ being considered in its standard metric topology). What are $\mathrm{Cl} \mathbb{Q}$ and $\operatorname{Int} \mathbb{Q}$ ?
(2) The same question for the subspace $A \subset \mathbb{R}^{2}$ obtained from the standard open unit disk by deleting the radius $\{0 \leqslant y<1\}$.

Solution: (1) $\mathrm{Cl} \mathbb{Q}=\mathbb{R}$, since every real has a rational approximation (i.e., can be represented as the limit of a sequence of rationals). Int $\mathbb{Q}=\varnothing$, since every interval in $\mathbb{R}$ has irrational points and, hence, does not entirely belong to $\mathbb{Q}$.
(2) $A$ is open as difference between an open and a closed set. (Why?) Hence, $\operatorname{Int} A=A$. As to the closure, it is the closed disk $D^{2}$. (One can easily see that every point of this disk is a limit point of $A$.)

Problem 2. Let $B \subset X$ be a subset of a topological space $X$. Prove that $\mathrm{Cl} \operatorname{Int} \mathrm{Cl} \operatorname{Int} B=\mathrm{Cl} \operatorname{Int} B$ and Int $\mathrm{Cl} \operatorname{Int} \mathrm{Cl} B=\operatorname{Int} \mathrm{Cl} B$. Can one strip anything off from these identities? (E.g., is it always true that Int $\mathrm{Cl} \operatorname{Int} B=\operatorname{Int} B$, or $\operatorname{Int} \mathrm{Cl} B=B$ ?) As usual, you are supposed to either prove an assertion, or give a counterexample. (Hint: The first question is easy if you choose an appropriate definitions of Cl and Int. As to the second one, you can use, e.g., Problem 1.)

Solution: The above appropriate definitions are "the smallest closed set ..." and "the largest open set $\ldots$.. In particular, from this it obviously follows that $A \subset B$ always implies $\mathrm{Cl} A \subset \mathrm{Cl} B$ and $\operatorname{Int} A \subset$ Int $B$. Besides, $\mathrm{ClCl} A=\mathrm{Cl} A$ and $\operatorname{Int} \operatorname{Int} A=\operatorname{Int} A$ for any subset $A \subset X$. Now, let us prove, say, that $\mathrm{Cl} \operatorname{Int} \mathrm{Cl} \operatorname{Int} A=\mathrm{Cl} \operatorname{Int} A$. We have:

$$
\begin{aligned}
\operatorname{Int}(\mathrm{Cl} \operatorname{Int} B) \subset \mathrm{Cl} \operatorname{Int} B & \Longrightarrow \mathrm{Cl}(\operatorname{Int} \mathrm{Cl} \operatorname{Int} B) \subset \mathrm{Cl}(\mathrm{Cl} \operatorname{Int} B)=\mathrm{Cl} \operatorname{Int} B, \\
\mathrm{Cl}(\operatorname{Int} B) \supset \operatorname{Int} B & \Longrightarrow \mathrm{Cl} \operatorname{Int}(\mathrm{Cl} \operatorname{Int} B) \supset \mathrm{Cl} \operatorname{Int}(\operatorname{Int} B)=\mathrm{Cl} \operatorname{Int} B,
\end{aligned}
$$

and the two inclusions imply the desired identity.
To construct a counterexample to the other conjectures, let us take for $X$ the disjoint union $\mathbb{R}^{2} \cup \mathbb{R}^{1} \cup \mathbb{R}^{1}$, and for $B \subset X$, the union of the set $A \subset \mathbb{R}^{2}$ (see Problem $\left.1(2)\right), \mathbb{Q} \subset \mathbb{R}^{1}$, and pt $\subset \mathbb{R}^{1}$ (a single point). Then we have:

$$
\begin{array}{rlrl}
B & =A & \cup \mathbb{Q} \cup \mathrm{pt}, \\
\mathrm{Cl} B & =D^{2} & \cup \mathbb{R}^{1} \cup \mathrm{pt}, \\
\operatorname{Int~} \mathrm{Cl} B & =\{\text { open disk }\} & \cup \mathbb{R}^{1}, \\
\mathrm{Cl} \operatorname{Int} \mathrm{Cl} B & =D^{2} & \cup \mathbb{R}^{1}, \\
\operatorname{Int} B & =A, & & \\
\mathrm{Cl} \operatorname{Int} B & =D^{2}, & & \\
\text { Int } \mathrm{Cl} \operatorname{Int} B & =\{\text { open disk }\} & &
\end{array}
$$

and one can see that all the seven sets are different.

Problem 3. Prove that the circle $S^{1}=\left\{x \in \mathbb{R}^{2} \mid\|x\|=1\right\}$ is connected. Prove that $S^{1}$ is not homeomorphic to the unit interval $I=[0,1]$. (Hint: Represent $S^{1}$ as a continuous image of a space known to be connected. For the second question, try to remove a point and compare the results.)
Solution: The map $I \rightarrow S^{1}, t \mapsto \exp (2 \pi i t)$ is continuous and onto. $I$ is connected, hence so is $S^{1}$. After deleting a point $S^{1}$ is still connected (as the complement is homeomorphic to $(0,1)$ ). On the other hand, in $I$ there are points (any interior point) deleting which makes the space disconnected. Hence, $S^{1} \not \approx I$.

Problem 4. Give a topological classification of the latin letters, assuming that they appear like this:

## A B CDEFGHIJKLMNOPQRSTUVWXYZ

(I.e., you are supposed to (a) split the alphabet into classes of homeomorphic letters, and (b) prove that letters of distinct classes are not homeomorphic.)

Solution: The homeomorphism classes of the letters, along with the invariants which distinguish between them, are given in the following table: (See also comments below)

| N | Class | Endpoints | $I_{1}(X)$ | $I_{2}(X)$ | $\# I_{3}(X)$ | $\# I_{4}(X)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | A R | 2 | $\mathrm{pt} \cup \mathrm{pt} \cup I^{\circ} \cup I^{\circ}$ | $\hat{I} \cup \hat{I}$ | 0 | 0 |
| 2 | B | 0 | $X$ itself | $\varnothing$ | 0 | 0 |
| 3 | CGIJLMNSUVWZ | 2 | $\mathrm{pt} \cup \mathrm{pt}$ | $I^{\circ}$ | 0 | 0 |
| 4 | D O | 0 | $X$ itself | $\varnothing$ | 0 | 0 |
| 5 | E F T Y | 3 | $\mathrm{pt} \cup \mathrm{pt} \cup \mathrm{pt}$ | $I^{\circ} \cup I^{\circ} \cup I^{\circ}$ | 1 | 0 |
| 6 | H K | 4 | $\mathrm{pt} \cup \mathrm{pt} \cup \mathrm{pt} \cup \mathrm{pt}$ | $I^{\circ} \cup I^{\circ} \cup I^{\circ} \cup I^{\circ} \cup I^{\circ}$ | 2 | 0 |
| 7 | P | 1 | $\mathrm{pt} \cup I^{\circ}$ | $\hat{I}$ | 0 | 0 |
| 8 | Q | 2 | $\mathrm{pt} \cup \mathrm{pt} \cup I^{\circ}$ | $I^{\circ} \cup I^{\circ}$ | 1 | 0 |
| 9 | X | 4 | $\mathrm{pt} \cup \mathrm{pt} \cup \mathrm{pt} \cup \mathrm{pt}$ | $I^{\circ} \cup I^{\circ} \cup I^{\circ} \cup I^{\circ}$ | 0 | 1 |

Here pt, $I^{\circ}$, and $\hat{I}$ stand, respectively, for a single point, open interval $(0,1)$, and semi-open interval $(0,1]$, and $\cup$ denotes disjoint union of topological spaces. In order to distinguish the classes, introduce the subsets $I_{n}(X)$ of the points $x \in X$ such that $X \backslash\{x\}$ consists of $n$ connected components. Also, let us call a point $x \in X$ an endpoint of $X$ if $U \backslash\{x\}$ is connected for any connected neighborhood $U$ of $x$. Clearly, any homeomorphism $X \rightarrow Y$ must take $I_{n}(X)$ to $I_{n}(Y)$ and the endpoints of $X$ to those of $Y$.

In view of the table the only problem left is to prove that classes 2 and 4 are different. For this purpose just note that any pair of distinct points divides letters D and O (which are obviously homeomorphic to $S^{1}$ ) into two intervals, while in $B$ there is a pair of points which divides it into three intervals.

Remark. Note that the comma "," belongs to class 3, since it is also a segment (though a very small one). The other punctuation marks form three more classes: $\{\},.\{:\}$, and $\{;,!, ?\}$.

Remark. Note that this classification depends on the font one uses. Try, for example, these letters: (Computer modern typewriter font by D. Knuth. Just for the record: what we did was Computer modern sans serif)

ABCDEFGHIJKLMNOPQRSTUVWXYZ

