Math 411, Spring 1997

Solutions to the First Midterm

Problem 1. (1) Let $\mathbb{Q} \subset \mathbb{R}$ be the set of rationals (\mathbb{R} being considered in its standard metric topology). What are $Cl \mathbb{Q}$ and $Int \mathbb{Q}$?

(2) The same question for the subspace $A \subset \mathbb{R}^2$ obtained from the standard open unit disk by deleting the radius $\{0 \leq y < 1\}$.

Solution: (1) $\operatorname{Cl} \mathbb{Q} = \mathbb{R}$, since every real has a rational approximation (i.e., can be represented as the limit of a sequence of rationals). Int $\mathbb{Q} = \emptyset$, since every interval in \mathbb{R} has irrational points and, hence, does not entirely belong to \mathbb{Q} .

(2) A is open as difference between an open and a closed set. (Why?) Hence, Int A = A. As to the closure, it is the closed disk D^2 . (One can easily see that every point of this disk is a limit point of A.)

Problem 2. Let $B \subset X$ be a subset of a topological space X. Prove that $\operatorname{Cl}\operatorname{Int}\operatorname{Cl}\operatorname{Int} B = \operatorname{Cl}\operatorname{Int} B$ and $\operatorname{Int}\operatorname{Cl}\operatorname{Int}\operatorname{Cl} B = \operatorname{Int}\operatorname{Cl} B$. Can one strip anything off from these identities? (E.g., is it always true that $\operatorname{Int}\operatorname{Cl}\operatorname{Int} B = \operatorname{Int} B$, or $\operatorname{Int}\operatorname{Cl} B = B$?) As usual, you are supposed to either prove an assertion, or give a counterexample. (*Hint*: The first question is easy if you choose an appropriate definitions of Cl and Int. As to the second one, you can use, e.g., Problem 1.)

Solution: The above appropriate definitions are "the smallest closed set ... " and "the largest open set ... ". In particular, from this it obviously follows that $A \subset B$ always implies $\operatorname{Cl} A \subset \operatorname{Cl} B$ and $\operatorname{Int} A \subset$ Int B. Besides, $\operatorname{Cl} \operatorname{Cl} A = \operatorname{Cl} A$ and $\operatorname{Int} \operatorname{Int} A = \operatorname{Int} A$ for any subset $A \subset X$. Now, let us prove, say, that Cl Int Cl Int A = Cl Int A. We have:

$$\begin{aligned} \operatorname{Int}(\operatorname{Cl}\operatorname{Int}B) &\subset \operatorname{Cl}\operatorname{Int}B \implies \operatorname{Cl}(\operatorname{Int}\operatorname{Cl}\operatorname{Int}B) \subset \operatorname{Cl}(\operatorname{Cl}\operatorname{Int}B) = \operatorname{Cl}\operatorname{Int}B, \\ &\operatorname{Cl}(\operatorname{Int}B) \supset \operatorname{Int}B \implies \operatorname{Cl}\operatorname{Int}(\operatorname{Cl}\operatorname{Int}B) \supset \operatorname{Cl}\operatorname{Int}(\operatorname{Int}B) = \operatorname{Cl}\operatorname{Int}B, \end{aligned}$$

and the two inclusions imply the desired identity.

To construct a counterexample to the other conjectures, let us take for X the disjoint union $\mathbb{R}^2 \cup \mathbb{R}^1 \cup \mathbb{R}^1$, and for $B \subset X$, the union of the set $A \subset \mathbb{R}^2$ (see Problem 1(2)), $\mathbb{Q} \subset \mathbb{R}^1$, and $\text{pt} \subset \mathbb{R}^1$ (a single point). Then we have:

$$B = A \qquad \cup \mathbb{Q} \quad \cup \text{ pt}$$

$$Cl B = D^2 \qquad \cup \mathbb{R}^1 \quad \cup \text{ pt}$$

$$Int Cl B = \{\text{open disk}\} \quad \cup \mathbb{R}^1,$$

$$Cl Int Cl B = D^2 \qquad \cup \mathbb{R}^1,$$

$$Int B = A,$$

$$Cl Int B = D^2,$$

$$Int Cl Int B = \{\text{open disk}\},$$

and one can see that all the seven sets are different.

Problem 3. Prove that the circle $S^1 = \{x \in \mathbb{R}^2 \mid ||x|| = 1\}$ is connected. Prove that S^1 is not homeomorphic to the unit interval I = [0, 1]. (*Hint*: Represent S^1 as a continuous image of a space known to be connected. For the second question, try to remove a point and compare the results.)

Solution: The map $I \to S^1$, $t \mapsto \exp(2\pi i t)$ is continuous and onto. I is connected, hence so is S^1 . After deleting a point S^1 is still connected (as the complement is homeomorphic to (0,1)). On the other hand, in I there are points (any interior point) deleting which makes the space disconnected. Hence, $S^1 \not\cong I$.

Problem 4. Give a topological classification of the latin letters, assuming that they appear like this:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

(I.e., you are supposed to (a) split the alphabet into classes of homeomorphic letters, **and** (b) prove that letters of distinct classes are not homeomorphic.)

SOLUTION: The homeomorphism classes of the letters, along with the invariants which distinguish between them, are given in the following table: (See also comments below)

Ν	Class	Endpoints	$I_1(X)$	$I_2(X)$	$\#I_3(X)$	$\#I_4(X)$
1	AR	2	$\mathrm{pt} \cup \mathrm{pt} \cup I^{\circ} \cup I^{\circ}$	$\hat{I} \cup \hat{I}$	0	0
2	В	0	X itself	Ø	0	0
3	CGIJLMNSUVWZ	2	$\mathrm{pt} \cup \mathrm{pt}$	I°	0	0
4	DO	0	X itself	Ø	0	0
5	EFTY	3	$\mathrm{pt} \cup \mathrm{pt} \cup \mathrm{pt}$	$I^\circ \cup I^\circ \cup I^\circ$	1	0
6	НК	4	$\mathrm{pt} \cup \mathrm{pt} \cup \mathrm{pt} \cup \mathrm{pt}$	$I^{\circ} \cup I^{\circ} \cup I^{\circ} \cup I^{\circ} \cup I^{\circ} \cup I^{\circ}$	2	0
7	Р	1	$\mathrm{pt} \cup I^{\circ}$	\hat{I}	0	0
8	Q	2	$\operatorname{pt} \cup \operatorname{pt} \cup I^{\circ}$	$I^{\circ} \cup I^{\circ}$	1	0
9	x	4	$\mathrm{pt} \cup \mathrm{pt} \cup \mathrm{pt} \cup \mathrm{pt}$	$I^{\circ} \cup I^{\circ} \cup I^{\circ} \cup I^{\circ}$	0	1

Here pt, I° , and \hat{I} stand, respectively, for a single point, open interval (0, 1), and semi-open interval (0, 1], and \cup denotes disjoint union of topological spaces. In order to distinguish the classes, introduce the subsets $I_n(X)$ of the points $x \in X$ such that $X \setminus \{x\}$ consists of n connected components. Also, let us call a point $x \in X$ an *endpoint* of X if $U \setminus \{x\}$ is connected for any connected neighborhood U of x. Clearly, any homeomorphism $X \to Y$ must take $I_n(X)$ to $I_n(Y)$ and the endpoints of X to those of Y.

In view of the table the only problem left is to prove that classes 2 and 4 are different. For this purpose just note that any *pair* of distinct points divides letters D and O (which are obviously homeomorphic to S^{1}) into two intervals, while in B there is a pair of points which divides it into three intervals.

Remark. Note that the comma "," belongs to class 3, since it is also a segment (though a very small one). The other punctuation marks form three more classes: $\{.\}, \{:\},$ and $\{:, !, ?\}$.

Remark. Note that this classification depends on the font one uses. Try, for example, these letters: (Computer modern typewriter font by D. Knuth. Just for the record: what we did was Computer modern sans serif)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z