Solutions to the Final Exam

Problem 1. A $1-\mathrm{kg}$ weight is attached to the lower end of a spring suspended from the ceiling. In its equilibrium position the weight stretches the spring 10 cm . Starting at time $t_{0}=0$ the weight is pulled down by a force of 30 N for $\pi \mathrm{sec}$ and then released. Find the displacement of the weight as function of time and the amplitude of the resulting free oscillation. (Assume $g=10$.)

Solution: Introduce the constants: $m=1 \mathrm{~kg}$ is the mass of the weight, $y_{0}=0.1 \mathrm{~m}$, the original displacement in the equilibrium position, k, the spring coefficient, $F_{0}=30 \mathrm{~N}$, the value of the force applied to the weight, and $a=\pi$ sec, the duration of the force. From Hook's law we have $m g=k y_{0}$, i.e., $k=m g / y_{0}$. The force applied as function of time can be given by $F(t)=F_{0}(1-\alpha(t-a))$, where α is the step function. Newton's second law gives the equation $m y^{\prime \prime}=-k\left(y+y_{0}\right)+m g+F(t), y(0)=0, y^{\prime}(0)=0$, or $y^{\prime \prime}+(k / m) y=$ $\left(F_{0} / m\right)(1-\alpha(t-a))$. (Here y is the displacement; the axis is directed straight down and the origin is chosen at the equilibrium position.) Let $\hat{y}=L\{y\}$. Apply the Laplace transform:

$$
s^{2} \hat{y}+\frac{k}{m} \hat{y}=\frac{F_{0}}{m s}\left(1-e^{-a s}\right), \quad \text { or } \quad \hat{y}=\frac{F_{0} / m}{s\left(s^{2}+(k / m)\right)}\left(1-e^{-a s}\right)
$$

Hence (using properties of $\left.L^{-1}\right), y=G(t)-G(t-a) \alpha(t-a)$, where $G(t)$ is the inverse transform of $g(s)=F_{0} /\left[m s\left(s^{2}+(k / m)\right)\right]$. To find $G(t)$, use the tables:

$$
g(s)=\frac{F_{0}}{k}\left[\frac{1}{s}-\frac{s}{s^{2}+(k / m)}\right], \quad \text { whence } \quad G(s)=\frac{F_{0}}{k}\left(1-\cos \sqrt{\frac{k}{m}} t\right) .
$$

Finally, substituting the constants, we get

$$
y(t)=0.3(1-\alpha(t-\pi))-0.3(\cos 10 t-\cos 10(t-\pi) \alpha(t-\pi)) \text {. }
$$

When the force is removed (i.e., $t>\pi$), one has $\alpha(t-\pi)=1$ and, since $\cos 10(t-\pi)=\cos 10 t$, we get $y(t)=0$ for $t>\pi$, i.e., the weight comes back to the equilibrium position and there is no oscillation! (Thus, the amplitude is 0 .) Surprising, isn't it?

Problem 2. Represent the general solution to $\left(x^{2}-3\right) y^{\prime \prime}+6 x y^{\prime}+6 y=0$ by a power series about the origin. Indicate the interval of convergence of the series.

Solution: Let $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ be the series in question. Plug in to get

$$
\sum_{n=0}^{\infty} n(n-1) c_{n} x^{n}-3 \sum_{n=0}^{\infty} n(n-1) c_{n} x^{n-2}+6 \sum_{n=0}^{\infty} n c_{n} x^{n}+6 \sum_{n=0}^{\infty} c_{n} x^{n}=0
$$

or, after shifting the index in the second sum, $\sum_{n=0}^{\infty}\left[n(n-1) c_{n}-3(n+2)(n+1) c_{n+2}+6 n c_{n}+6 c_{n}\right] x^{n}=0$. Equating the coefficients to 0 , we get the recurrence relation $\left(n^{2}+5 n+6\right) c_{n}=3(n+2)(n+1) c_{n+2}$, or $c_{n+2}=(n+3) c_{n} / 3(n+1)$. Shift the index back: $c_{n}=(n+1) c_{n-2} / 3(n-1), n \geqslant 2$. This obviously yields

$$
c_{2 k}=\frac{(2 k+1)(2 k-1) \ldots(3)}{3^{k}(2 k-1)(2 k-3) \ldots(1)} c_{0}=\frac{2 k+1}{3^{k}} c_{0} \quad \text { and } \quad c_{2 k+1}=\frac{(2 k+2)(2 k) \ldots(4)}{3^{k}(2 k)(2 k-2) \ldots(2)} c_{1}=\frac{k+1}{3^{k}} c_{1} .
$$

Thus, the solution is

$$
y=c_{0} \sum_{k=0}^{\infty} \frac{2 k+1}{3^{k}} x^{2 k}+c_{1} \sum_{k=0}^{\infty} \frac{k+1}{3^{k}} x^{2 k+1}
$$

The equation has two singular points, $x= \pm \sqrt{3}$. Hence, the interval of convergence of the series is $(-\sqrt{3}, \sqrt{3})$.

Problem 3. Find the inverse Laplace transforms of

$$
\text { (a) } \quad f(s)=\frac{2 s^{2}-2}{s^{2}\left(s^{2}-2 s+2\right)}, \quad \text { (b) } \quad f(s)=\frac{1}{s^{2}+6 s+13} \text {. }
$$

Solution: (a) Since $s^{2}-2 s+2=(s-1)^{2}+1$ has no real roots, the elementary fraction decomposition has the form

$$
\frac{2 s^{2}-2}{s^{2}\left(s^{2}-2 s+2\right)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C s+D}{\left(s^{2}-2 s+2\right)}
$$

Get rid of the denominators, $2 s^{2}-2=A s\left(s^{2}-2 s+2\right)+B\left(s^{2}-2 s+2\right)+(C s+D) s^{2}$, and equate the coefficients: $A+C=0,-2 A+B+D=2,2 A-2 B=0,2 B=-2$. Hence, $A=B=-1, C=D=1$, and

$$
L^{-1}\left\{\frac{2 s^{2}-2}{s^{2}\left(s^{2}-2 s+2\right)}\right\}=-L^{-1}\left\{\frac{1}{s}\right\}-L^{-1}\left\{\frac{1}{s^{2}}\right\}+L^{-1}\left\{\frac{(s-1)+2}{(s-1)^{2}+1}\right\}=-1-t+e^{t} \cos t+2 e^{t} \sin t
$$

(b) This one is straightforward:

$$
L^{-1}\left\{\frac{1}{s^{2}+6 s+13}\right\}=L^{-1}\left\{\frac{1}{(s+3)^{2}+4}\right\}=\frac{1}{2} e^{-3 t} \sin 2 t .
$$

Problem 4. Find the first five terms of the power series expansion about $x_{0}=1$ of the solution to

$$
y^{\prime \prime}=\left(y^{\prime}\right)^{3}+x^{2}, \quad y(1)=1, \quad y^{\prime}(1)=1
$$

Solution: We need the values of y and its first four derivatives at 1 . From the initial conditions we have $y(1)=1$ and $y^{\prime}(1)=1$, and, differentiating the equation and plugging in, we obtain:

$$
\begin{aligned}
y^{\prime \prime} & =\left(y^{\prime}\right)^{3}+x^{2}, & y^{\prime \prime}(1) & =2 \\
y^{\prime \prime \prime} & =3\left(y^{\prime}\right)^{2} y^{\prime \prime}+2 x, & y^{\prime \prime \prime}(1) & =8 \\
y^{\mathrm{IV}} & =6 y^{\prime}\left(y^{\prime \prime}\right)^{2}+3\left(y^{\prime}\right)^{2} y^{\prime \prime \prime}+2, & y^{\mathrm{IV}}(1) & =50
\end{aligned}
$$

Thus, $y=\sum_{n=0}^{\infty} y^{(n)}(1)(x-1)^{n} / n!=1+(x-1)+(x-1)^{2}+\frac{4}{3}(x-1)^{3}+\frac{25}{12}(x-1)^{4}+\ldots$.
Problem 5. Show that

$$
L^{-1}\left\{\frac{1}{\sqrt{s}(s-1)}\right\}=\frac{2 e^{t}}{\sqrt{\pi}} \int_{0}^{\sqrt{t}} e^{-x^{2}} d x
$$

Solution: We have $L^{-1}\{1 / \sqrt{s}\}=1 / \sqrt{\pi t}$ and $L^{-1}\{1 /(s-1)\}=e^{t}$. Use the convolution theorem:

$$
\left.L^{-1}\left\{\frac{1}{\sqrt{s}(s-1)}\right\}=\frac{1}{\sqrt{\pi}} \int_{0}^{t} e^{t-u} \frac{d u}{\sqrt{u}}=\frac{2 e^{t}}{\sqrt{\pi}} \int_{0}^{\sqrt{t}} e^{-x^{2}} d x \quad \text { (substituting } u=x^{2}\right)
$$

