Solutions to Midterm 2

Problem 1. Given that $y=x^{2}$ is a solution to $x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=0$, find a general solution to the equation $x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=1$.
Solution: We will look for the solution in the form $y=x^{2} v$. Then $y^{\prime}=2 x v+x^{2} v^{\prime}, y^{\prime \prime}=2 v+4 x v^{\prime}+x^{2} v^{\prime \prime}$, and substitution gives $x^{4} v^{\prime \prime}+6 x^{3} v^{\prime}=1$. This is a first order linear equation in $u=v^{\prime}$; its solution is given by the formula: $u=1 /\left(3 x^{3}\right)+C / x^{6}$. Hence, $v=\int u d x=-1 /\left(6 x^{2}\right)+C / x^{5}+C_{1}$, and the answer is $y=x^{2} v=-1 / 6+C / x^{3}+C_{1} x^{2}$.

Problem 2. Let $y_{1}(x)$ and $y_{2}(x)$ be the solutions to the equation $x^{2} y^{\prime \prime}+2 x y^{\prime}+\left(1-x^{2}\right) y=0$ satisfying $y_{1}(1)=1, y_{1}^{\prime}(1)=0$ and $y_{2}(1)=-3, y_{2}^{\prime}(1)=2$. Let, further, $W\left[y_{1}, y_{2}\right](x)$ be the Wronskian of y_{1}, y_{2}. Find $W\left[y_{1}, y_{2}\right](2)$.
Solution: As known, the Wronskian is given by $W(x)=\exp \left(-\int p(x) d x\right)=\exp \left(-\int 2 d x / x\right)=C / x^{2}$. The value at $x=1$ and, hence, C are found from the initial conditions: $C /(1)^{2}=\left|\begin{array}{cc}1 & -3 \\ 0 & 2\end{array}\right|=2$. Thus, $C=2$ and $W(2)=2 /(2)^{2}=1 / 2$.

Problem 3. Find a general solution to $y^{\prime \prime}-3 y^{\prime}+2 y=e^{x}+\sin 2 x$.
Solution: First, solve the homogeneous equation $y^{\prime \prime}-3 y^{\prime}+2 y=0$. Its characteristic polynomial $f(t)=$ $t^{2}-3 t+2$ has two simple roots: $t=1$ and $t=2$. Hence, its general solution is $y_{0}=C_{1} e^{x}+C_{2} e^{2 x}$. Now, find a partial solution corresponding to the right hand side term e^{x}. It can be found in the form $y_{1}=A x e^{x}$. (Note the x factor, appearing due to the fact that $t=1$ is a root of the characteristic polynomial!) Plug in to get $2 A e^{x}-3 A e^{x}=e^{x}$, whence $A=-1$ and $y_{1}=-x e^{x}$. Next, find a partial solution corresponding to the right hand side term $\sin 2 x$. It can be found in the form $y_{2}=B \sin 2 x+C \cos 2 x$. (Note that both \sin and cos must be present!) As before, plug in to get $(-2 B+6 C) \sin 2 x+(-6 B-2 C) \cos 2 x=\sin 2 x$, whence $-2 B+6 C=1$ and $-6 B-2 C=0$. Thus, $B=-1 / 20$ and $C=3 / 20$. Finally, the general solution is $y=y_{0}+y_{1}+y_{2}=C_{1} e^{x}+C_{2} e^{2 x}-x e^{x}-\frac{1}{20} \sin 2 x+\frac{3}{20} \cos 2 x$.

Problem 4. Find a general solution to $y^{\prime \prime}-2 y^{\prime}+y=x e^{x} \ln x$.
Solution: First, solve the homogeneous equation $y^{\prime \prime}-2 y^{\prime}+y=0$. Its characteristic polynomial $f(t)=$ $t^{2}-2 t+1$ has one double root $t=1$; hence, its general solution is $y=C_{1} e^{x}+C_{2} x e^{x}$. Now use variation of parameters: $C_{1}^{\prime}(x)$ and $C_{2}^{\prime}(x)$ are found from the system

$$
C_{1}^{\prime} e^{x}+C_{2}^{\prime} x e^{x}=0, \quad C_{1}^{\prime} e^{x}+C_{2}^{\prime}\left(x e^{x}+e^{x}\right)=x e^{x} \ln x
$$

which gives $C_{2}^{\prime}=x \ln x$ and $C_{1}^{\prime}=-C_{2}^{\prime} x=-x^{2} \ln x$. It remains to integrate:

$$
\begin{aligned}
& C_{1}=-\int x^{2} \ln x d x=-\frac{1}{3} x^{3} \ln x+\int \frac{1}{3} x^{3} \frac{d x}{x}=-\frac{1}{3} x^{3} \ln x+\frac{1}{9} x^{3}, \\
& C_{2}=\int x \ln x d x=\frac{1}{2} x^{2} \ln x-\int \frac{1}{2} x^{2} \frac{d x}{x}=\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}
\end{aligned}
$$

(In both the cases one can use integration by parts.) After substituting and collecting similar terms we obtain the general solution: $y=C_{1} e^{x}+C_{2} x e^{x}+\frac{1}{6} x^{3} e^{x} \ln x-\frac{5}{36} x^{3} e^{x}$.

Problem 5. Find a general solution to $y y^{\prime \prime}+\left(y^{\prime}\right)^{3}=\left(y^{\prime}\right)^{2}$.
Solution: Let $y^{\prime}=p(y)$. Then $y^{\prime \prime}=p p_{y}^{\prime}$ and the equation becomes $y p p^{\prime}+p^{3}=p^{2}$. Separate the variables and integrate: $\frac{d p}{p(1-p)}=\frac{d y}{y}$, whence $\ln \left|\frac{p}{1-p}\right|=\ln |y|+C$ or, resolving in $p, \frac{p}{1-p}=C y$ and $p=\frac{C y}{1+C y}$. If $C=0$, then $p=0$ and $y=$ const. Obviously, these are solutions. If $C \neq 0$, we obtain a separable equation $\frac{d y}{d x}=\frac{C y}{1+C y}$. Finally, the solution is: either $y=\mathrm{const}$, or $x=y+C_{2} \ln |y|+C_{1} \quad\left(\right.$ where $\left.C_{2}=1 / C_{1}\right)$.

