Solutions to Midterm 1

Problem 1. Find the general solution to $\left(3 x^{2} y+12 x^{2}+6 x y+y^{3}\right) d x+3\left(x^{2}+y^{2}\right) d y=0$.
Solution: Let $M(x, y)=3 x^{2} y+12 x^{2}+6 x y+y^{3}$ and $N(x, y)=3\left(x^{2}+y^{2}\right)$. Then $D=(\partial M / \partial y)-(\partial N / \partial x)=$ $3 x^{2}+3 y^{2}$, and $D / N=1$ does not depend on y. Hence, $\exp \left(\int 1 d x\right)=e^{x}$ is an integrating factor. Multiply the equation by e^{x} and find its first integral Φ from

$$
\frac{\partial \Phi}{\partial x}=\left(3 x^{2} y+12 x^{2}+6 x y+y^{3}\right) e^{x}, \quad \frac{\partial \Phi}{\partial y}=3\left(x^{2}+y^{2}\right) e^{x}
$$

It is more convenient to use the second equation first; integration in respect to y gives us $\Phi=\left(3 x^{2} y+y^{3}\right) e^{x}+$ $C(x)$. Now substitute to the first equation to get $C^{\prime}(x)=12 x^{2} e^{x}$. Integrating by parts two times, we obtain $C(x)=\left(12 x^{2}-24 x+24\right) e^{x}$. Finally, the general solution is $\left(3 x^{2} y+12 x^{2}-24 x+y^{3}+24\right) e^{x}=C$.

Problem 2. Solve the Cauchy problem $-2 x y d x+\left(x^{2}+y^{2}\right) d y=0, y(0)=2$.
Solution: The equation has homogeneous coefficients; hence, it can be solved by the substitution $y=v x$, $d y=x d v+v d x$. Substituting and cancelling x^{2} we obtain $-2 v d x+\left(v^{2}+1\right)(x d v+v d x)=0$, or, after simplification, $v\left(v^{2}-1\right) d x=-\left(v^{2}+1\right) x d v$. Separate the variables and integrate:

$$
\frac{d x}{x}=-\frac{\left(v^{2}+1\right) d v}{v\left(v^{2}-1\right)} \quad\left[=\frac{d v}{v}-\frac{2 v d v}{v^{2}-1}\right] \quad \text { and } \quad \ln |x|=\ln \left|\frac{v}{v^{2}-1}\right|+C
$$

It remains to substitute back $v=y / x$ and simplify: $x=C_{1} y x /\left(y^{2}-x^{2}\right)$, or $y^{2}-x^{2}=C_{1} y$. Using the initial conditions $x=0, y=2$, we find $C_{1}=2$ and, finally, the solution is $y^{2}-x^{2}=2 y$.

Remark. Alternatively, one can treat the equation as Bernoulli's equation in $x(y)$ (cf. Problem 3).
Problem 3. Find the orthogonal trajectories of the family of circles $x^{2}+(y-a)^{2}=a^{2}, a \in \mathbb{R}$.
Solution: First, we need to represent the given family as the family of integral curves of a differential equation. Differentiate the given equation $x^{2}+(y-a)^{2}=a^{2}$ to get $2 x+2(y-a) y^{\prime}=0$ and eliminate a : from the last equation one gets $a=y+x / y^{\prime}$, and substitution to the first one yields $x^{2}+\left(x / y^{\prime}\right)^{2}=\left(y+x / y^{\prime}\right)^{2}$, or, after simplification, $x^{2}=y^{2}+2 x y / y^{\prime}$. Now substitute $y=Y, y^{\prime}=-1 / Y^{\prime}$ to get an equation for the orthogonal trajectories: $x^{2}=Y^{2}-2 x Y Y^{\prime}$. This can be solved as Bernoulli's equation (or else similar to Problem 2): $Y^{\prime}-(1 / 2 x) Y=-(x / 2) Y^{-1}$. Let $Y=\sqrt{z}$. Then the equation transforms into $z 1-(1 / x) z=-x$, and the solution is straightforward: $Y^{2}=z=-x^{2}+C x$. After simplification one can see that the resulting curves are also circles: $\left(x-C_{1}\right)^{2}+Y^{2}=C_{1}^{2} \quad\left(\right.$ where $\left.C_{1}=C / 2\right)$.

Remark. As a matter of fact, the problem can easily be solved using elementary geometry.
Problem 4. A bullet of mass m is shot straight up at the velocity v_{0}. The air resistance is $\left|k v^{2}\right|$, where v is the current velocity of the bullet. Find:
(1) The moment when the bullet reaches its maximal altitude (10 pts).
(2) The maximal altitude of the bullet (10 pts).

Solution: Note that the problem is different from the last year's one, as the resistance is proportional to v^{2} ! Newton's second law gives the equation $m v^{\prime}=-m g-k v^{2}$; it is separable, and its general solution is $\sqrt{m / k g} \arctan (v \sqrt{k / m g})=C-t$. The constant $C=\sqrt{m / k g} \arctan \left(v_{0} \sqrt{k / m g}\right)$ is found from the initial condition $v(0)=v_{0}$. Clearly, at the highest position one has $v=0$; hence, the time is $t_{0}=C=$ $\sqrt{m / k g} \arctan \left(v_{0} \sqrt{k / m g}\right)$.

To find the maximal altitude, resolve the obtained solution in v and integrate:

$$
\frac{d x}{d t}=v=\sqrt{\frac{m g}{k}} \tan \sqrt{\frac{k g}{m}}(C-t) \quad \text { and, hence, } \quad x=\frac{m}{k} \ln \left|\cos \sqrt{\frac{k g}{m}}(C-t)\right|+C_{1}
$$

Now

$$
C_{1}=-\frac{m}{k} \ln \left|\cos C \sqrt{\frac{k g}{m}}\right|=-\frac{m}{2 k} \ln \frac{m g}{m g+k v_{0}^{2}}
$$

is found from the condition $x(0)=0$, and the position at time $t_{0}=C$ (found above) is

$$
x_{\max }=\frac{m}{k} \ln \cos (0)+C_{1}=\frac{m}{2 k} \ln \frac{m g+k v_{0}^{2}}{m g} .
$$

Remark. A good way to verify your answer is to, first, check the dimensions (note that the dimension of k is $\mathrm{sec} / \mathrm{m})$ and, second, check that, when $k \rightarrow 0$, the limits of t_{0} and $x_{\max }$ are the well known values v_{0} / g and $v_{0}^{2} / 2 g$, respectively. (The latter can easily be done using $\lim _{t \rightarrow 0}(\arctan t / t)=1$ and $\lim _{t \rightarrow 0}(\ln (1+t) / t)=1$.)

Problem 5. Solve the equation $\left(x^{3}+x y^{2}-y\right) d x+\left(y^{3}+x^{2} y+x\right) d y=0$.
Solution: Rewrite the equation as $\left(x^{2}+y^{2}\right)(x d x+y d y)+(x d y-y d x)=0$ and divide by $\left(x^{2}+y^{2}\right)$; then we get $\frac{1}{2} d\left(x^{2}+y^{2}\right)-d\left(\arctan \frac{y}{x}\right)=0$, and integration gives us the solution: $x^{2}+y^{2}=2 \arctan \frac{y}{x}+C$.

Remark. To visualize the solutions you can notice that in polar coordinates the integral curves of the equation are given by $\rho=\sqrt{2 \varphi+C}$. Thus, they look like 'parallel' expanding spirals starting at the origin.

