Solutions to Final Exam

Problem 1. When the dolmus driver steps in, the springs under his seat are squeezed by 10 cm . How much (in per cent) does the seat rest reduce the vibration of the engine whose frequency is 1200 revolutions per minute? (Assume the seat massless. Just a hint: keep in mind that the angular frequency ω (the coefficient in \sin) and the usual frequency f (in Hz) are related via $\omega=2 \pi f$.)

Solution: Let m be the driver's mass, $l=0.1 \mathrm{~m}$, the squeezing of the springs, and k, their coefficient of rigidity. Then $k l=m g$, i.e., $k=m g / l$. Let, further, $f=20 \mathrm{~Hz}$ be the frequency of the engine vibration, $\omega=2 \pi f$, its circular frequency, and A, its amplitude. Then the equation is $m y^{\prime \prime}+k y=m g+k A \sin (\omega t)$, where $y(t)$ is the vertical position of the seat. (Note that the equation represents Newton's second law for the seat; since the vibration is transmitted to the seat via the springs, the force is $k A \sin (\omega t)$.) The general solution is

$$
y(t)=C_{1} \sin (\alpha t)+C_{2} \cos (\alpha t)+\frac{m g}{k}+\frac{k A}{m\left(\alpha^{2}-\omega^{2}\right)} \sin (\omega t)
$$

where $\alpha=\sqrt{k / m}=\sqrt{g / l}$ is the intrinsic circular frequency of the seat-springs system. We are interested in the last term, which represents the vibration. Its amplitude is

$$
\left|\frac{k A}{m\left(\alpha^{2}-\omega^{2}\right)}\right|=\left|\frac{g}{g-\omega^{2} l}\right| A \approx 0.006 A .
$$

Thus, the vibration is reduced by $100-0.6=99.4 \%$ (i.e., almost completely).
Problem 2. Find the inverse Laplace transforms of

$$
\text { (a) } \quad f(s)=\frac{2 s^{4}+s^{3}+s^{2}+1}{s\left(s^{2}+1\right)^{2}}, \quad \text { (b) } \quad f(s)=\frac{1-2 s}{s^{2}+4 s+5} \text {. }
$$

Solution: (a) Decompose $f(s)$ into partial fractions:

$$
\begin{gathered}
\frac{2 s^{4}+s^{3}+s^{2}+1}{s\left(s^{2}+1\right)^{2}}=\frac{A}{s}+\frac{B s+C}{s^{2}+1}+\frac{D s+E}{\left(s^{2}+1\right)^{2}} \\
2 s^{4}+s^{3}+s^{2}+1=A\left(s^{2}+1\right)^{2}+(B s+C) s\left(s^{2}+1\right)+(D s+E) s
\end{gathered}
$$

Plugging in $s=0$ gives $A=1$, and the equation becomes $s^{4}+s^{3}-s^{2}=(B s+C) s\left(s^{2}+1\right)+(D s+E) s$. Now, equating the coefficients of s^{4}, s^{3}, s^{2}, and s, one gets, respectively, $B=1, C=1, B+D=-1$, and $C+E=0$, i.e., $D=-2$ and $E=-1$. It remains tu use the tables:

$$
\begin{aligned}
& \mathcal{L}^{-1}[f(s)]=\mathcal{L}^{-1}\left[\frac{1}{s}\right]+ \mathcal{L}^{-1}\left[\frac{s}{s^{2}+1}\right]+\mathcal{L}^{-1}\left[\frac{1}{s^{2}+1}\right]-2 \mathcal{L}^{-1}\left[\frac{s}{\left(s^{2}+1\right)^{2}}\right]-\mathcal{L}^{-1}\left[\frac{1}{\left(s^{2}+1\right)^{2}}\right]= \\
& 1+\cos t+\sin t-t \sin t-\frac{1}{2}(\sin t-t \cos t)=1+\frac{1}{2} \sin t+\cos t-t \sin t+\frac{t}{2} \cos t
\end{aligned}
$$

(b) One has

$$
\mathcal{L}^{-1}[f(s)]=\mathcal{L}^{-1}\left[\frac{1-2 s}{(s+2)^{2}+1}\right]=\mathcal{L}^{-1}\left[\frac{5-2(s+2)}{(s+2)^{2}+1}\right]=e^{-2 t}(5 \sin t-2 \cos t)
$$

Problem 3. Solve the initial value problem

$$
y^{\prime \prime}+y=\left\{\begin{array}{ll}
1, & 0 \leqslant t<\pi, \\
0, & t \geqslant \pi,
\end{array} \quad y(0)=y^{\prime}(0)=0\right.
$$

Solution: Let $\hat{y}(s)=\mathcal{L}[y]$. Then $\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \hat{y}$. The transform f of the right hand side can be found by straightforward integration:

$$
f(s)=\int_{0}^{\pi} e^{-s t} d t=-\left.\frac{e^{-s t}}{s}\right|_{t=0} ^{\pi}=\frac{1}{s}\left(1-e^{-\pi s}\right) .
$$

Thus, the equation transforms to $\hat{y}\left(s^{2}+1\right)=f(s)$ and $\hat{y}(s)=\left(1-e^{-\pi s}\right) / s\left(s^{2}+1\right)$. To find the inverse transform, use partial fractions and tables. Let $g(t)=1 / s\left(s^{2}+1\right)$. Then

$$
\begin{gathered}
\mathcal{L}^{-1}[g(s)]=\mathcal{L}^{-1}\left[\frac{1}{s}\right]-\mathcal{L}^{-1}\left[\frac{s}{s^{2}+1}\right]=1-\cos t, \quad \text { and } \\
y=\mathcal{L}^{-1}\left[\left(1-e^{-\pi s}\right) g(s)\right]=1-\cos t-\alpha(t-\pi)(1+\cos t),
\end{gathered}
$$

where α is the Heaviside step function. (Certainly, I use the fact that $\cos (t-\pi)=-\cos t$.)
Problem 4. Represent the general solution to $\left(x^{2}+4\right) y^{\prime \prime}+6 x y^{\prime}+4 y=0$ by a power series about the origin. Indicate an interval of convergence of the series.

Solution: Let $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ be the series. Plugging in gives

$$
\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n}+4 \sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}+6 \sum_{n=0}^{\infty} n a_{n} x^{n}+4 \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

In the second sum the first two terms are zero; hence, it can be reindexed to $\sum_{n=0}^{\infty}(n+1)(n+2) a_{n+2} x^{n}$. Now, equating the coefficients of equal powers of x gives a recurrence relation $4(n+1)(n+2) a_{n+2}=$ $-n(n-1) a_{n}-6 n a_{n}-4 a_{n}$, or $a_{n+2}=-a_{n}(n+4) / 4(n+2)$. By induction one obtains

$$
a_{2 k}=\frac{2 k+2}{2 \cdot(-4)^{k}} a_{0}, a_{2 k+1}=\frac{2 k+3}{3 \cdot(-4)^{k}} a_{1}, \text { and } y=a_{0} \sum_{k=0}^{\infty}(-1)^{k} \frac{2 k+2}{2 \cdot 4^{k}} x^{2 k}+a_{1} \sum_{k=0}^{\infty}(-1)^{k} \frac{2 k+3}{3 \cdot 4^{k}} x^{2 k+1},
$$

where a_{0}, a_{1} are arbitrary constants. Since the singular points of the equation are $x= \pm 2 i$, the series converges at least in the disk of radius 2 or, for real arguments, in the interval $(-2,2)$. On the other hand, it is obvious that the series diverges at $x=2$.

Problem 5. Find the first five terms of the power series expansion of the solution to

$$
y^{\prime \prime}=\sin y^{\prime}, \quad y(0)=0, \quad y^{\prime}(0)=1 .
$$

Solution: We need the values of y and its derivatives up to y^{IV} at 0 . The first two are given: $y(0)=0$ and $y^{\prime}(0)=0$. The others are found from the equation (differentiating and using the chain rule):

$$
\begin{aligned}
y^{\prime \prime}(0) & =\left.\sin y^{\prime}\right|_{x=0}=\sin 1, \\
y^{\prime \prime \prime}(0) & =\left.\frac{d}{d x}\left(\sin y^{\prime}\right)\right|_{x=0}=\left.\left(y^{\prime \prime} \cos y^{\prime}\right)\right|_{x=0}=\sin 1 \cos 1, \\
y^{\mathrm{IV}}(0) & =\left.\frac{d}{d x}\left(y^{\prime \prime} \cos y^{\prime}\right)\right|_{x=0}=\left.\left(y^{\prime \prime \prime} \cos y^{\prime}-\left(y^{\prime \prime}\right)^{2} \sin y^{\prime}\right)\right|_{x=0}=\sin 1 \cos ^{2} 1-\sin ^{3} 1=\sin 1 \cos 2 .
\end{aligned}
$$

Thus,

$$
y=\sum_{n=0}^{4} \frac{y^{(n)}(0)}{n!} x^{n}+\ldots=x+\frac{\sin 1}{2} x^{2}+\frac{\sin 1 \cos 1}{6} x^{3}+\frac{\sin 1 \cos 2}{24} x^{4}+\ldots
$$

An alternative (more difficult) way would be to try to solve the equation (substituting $y^{\prime}=v(x)$) to arrive at $y^{\prime}=2 \arctan \left(C e^{x}\right)$, where $C=\tan (1 / 2)$. (Note the constant which comes from the initial condition $\left.y^{\prime}(0)=1!\right)$ Then again use $y(0)=0$, differentiate the above expression to obtain the other derivatives at 0 , and use the Maclaurin formila...

