Solutions to Midterm 2

Problem 1. Find the solution to $y y^{\prime \prime}=\left(y^{\prime}\right)^{2}+y^{2} y^{\prime}$ satisfying the initial conditions $y(0)=y^{\prime}(0)=1$.
Solution: Let $y^{\prime}=p(y)$, so that $y^{\prime \prime}=p d p / d y$. The equation becomes $y p p^{\prime}=p^{2}+y^{2} p$. It has an obvious solution $p=0$, which does not satisfy the initial conditions. Dividing by $y p$ one gets a linear first order equation $p^{\prime}-\frac{1}{y} p=y$, whose general solution (found, say, using the formula) is $p(y)=y(y+C)$. The initial condition $p(1)=1$ gives $C=0$, i.e., $p(y)=y^{2}$. Now, solving $d y / d x=y^{2}$ (by separating the variables) gives $y=-1 /(x+C)$, and from the initial condition $y(0)=1$ one gets $C=-1$. Finally, $y=1 /(1-x)$.

Problem 2. Find a general solution to $y^{\prime \prime \prime}+4 y^{\prime \prime}+4 y^{\prime}+3 y=0$.
Solution: The characteristic equation is $t^{3}+4 t^{2}+4 t+3=0$. Possible integral roots are ± 1 and ± 3, and $t=-3$ is a root; and dividing by $(t+3)$ gives the equation $t^{2}+t+1=0$ and two more roots $-1 / 2 \pm i \sqrt{3} / 2$.
The solution is now straightforward: $y=C_{1} e^{-3 x}+C_{2} e^{-x / 2} \sin (x \sqrt{3} / 2)+C_{3} e^{-x / 2} \cos (x \sqrt{3} / 2)$.
Problem 3. Given that $y=e^{x}$ is a solution of the associated homogeneous equation, find a general solution to $(1-x) y^{\prime \prime}+x y^{\prime}-y=2(x-1)^{2} e^{-x}$.
Solution: The equation is linear and one can reduce its order by substituting $y=v e^{x}$. After plugging in (and dividing by $(1-x) e^{x}$) one gets a first order linear equation in v^{\prime} :

$$
v^{\prime \prime}+\left(1+\frac{1}{1-x}\right) v^{\prime}=2(1-x) e^{-2 x}
$$

whose solution can be found using the standard formula: $v^{\prime}=2(x-1) e^{-2 x}+C(x-1) e^{-x}$. Integration gives $v=-C x e^{-x}-x e^{-2 x}+\frac{1}{2} e^{-2 x}$, and the general solution to the original equation is $y=C_{1} e^{x}+v e^{x}$; after simplification, $y=C_{1} e^{x}+C_{2} x+\left(\frac{1}{2}-x\right) e^{-x}$.

Problem 4. Find a general solution to $y^{\prime \prime \prime}+y^{\prime \prime}-y^{\prime}-y=e^{x}+x^{2}$.
Solution: The characteristic polynomial is $t^{3}+t^{2}-t-1=\left(t^{2}-1\right)(t+1)$, and its roots are $t_{1}=1$ of multiplicity 1 and $t_{2}=-1$ of multiplicity 2 . Hence, the general solution to the associated homogeneous equation is $y_{c}=C_{1} e^{x}+C_{2} e^{-x}+C_{3} x e^{-x}$. For the e^{x} part of the free term, since $t=1$ is a simple root of the characteristic equation, the solution should be looked for in the form $y_{1}=A x e^{x}$; plugging in gives $4 A E^{x}=e^{x}$, i.e., $A+1 / 4$. For the x part the solution has the form $Y-2=A x^{2}+B x+C$ (a generic polynomial of degree 2), and plugging in gives $-A x^{2}-(2 A+B) x+(2 A-B-C)=x^{2}$, i.e., $A=-1,2 A+B=0$, and $2 A-B-C=0$, or $A=-1, B=2$, and $C=-4$. Finally, the solution is $y=y_{c}+y_{1}+y_{2}=C_{1} e^{x}+C_{2} e^{-x}+C_{3} x e^{-x}+\frac{1}{4} x e^{x}-x^{2}+2 x-4$.

Problem 5. Find a general solution to $y^{\prime \prime \prime}+y^{\prime}=\frac{1}{\cos x}$.
Solution: The general solution to the associated homogeneous equation is straightforward: $y_{c}=C_{1}+$ $C_{2} \sin x+C_{3} \cos x$. Variation of parameters gives the system

$$
\begin{aligned}
C_{1}^{\prime}+C_{2}^{\prime} \sin x+C_{3}^{\prime} \cos x & =0 \\
C_{2}^{\prime} \cos x-C_{3}^{\prime} \sin x & =0 \\
-C_{2}^{\prime} \sin x-C_{3}^{\prime} \cos x & =1 / \cos x
\end{aligned}
$$

From the last two equations $C_{2}^{\prime}=-\tan x$ and $C_{3}^{\prime}=1$, and from the first one, $C_{1}^{\prime}=-1 / \cos x$. After integrating and substituting,

$$
y=C_{1}+C_{2} \sin x+C_{3} \cos x+\frac{1}{2} \ln \left|\frac{1-\sin x}{1+\sin x}\right|+(\sin x) \ln |\cos x|+x \cos x .
$$

(To integrate C_{1}^{\prime} one can use, e.g., $C_{1}^{\prime}=\frac{\cos x}{1-\sin ^{2} x}$.)

