Solutions to Midterm 1

Problem 1. Find the general solution to $\left(e^{x}-\sin y\right) d x+\cos y d y=0$.
Solution: Let $\sin y=z$. Then $\cos y d y=d z$ and one obtains a linear equation $z^{\prime}-z=-e^{x}$, whose general solution is $z=e^{x}(-x+C)$. Thus, $\sin y=e^{x}(C-x)$, or $y=\pi k+(-1)^{k} \arcsin e^{x}(C-x), k \in \mathbb{Z}$.
Remark. Another way would be to find an integrating factor.
Problem 2. Solve the Cauchy problem $\left(x^{2}+3 x y+y^{2}\right) d x-x^{2} d y=0, y(1)=-\frac{1}{2}$.
Solution: The equation is homogeneous. Let $y=x z$. Then $x^{2}\left(1+3 z+z^{2}\right) d x-x^{2}(x d z+z d x)=0$, or $(z+1)^{2} d x=x d z$. Separate the variables and integrate: $\ln |x|=-(z+1)^{-1}+C$, or $\ln |x|=C-((y / x)+1)^{-1}$. To find C, let $x=1$ and $y=-\frac{1}{2}$. Then $C=2$. Finally, $\ln x=2-x /(x+y)$. (The $|\cdot|$ is dropped as the initial value $x=1$ is positive.) The result can easily be resolved in y :

$$
y=\frac{x}{2-\ln x}-x, \quad x \in\left(0, e^{2}\right)
$$

Problem 3. A cylindrical tank of radius R and height H has a round opening of radius r in the bottom. The tank is full of water. Find the time necessary to empty it. (Hint: water escapes from the tank through the opening at the rate $\sqrt{2 g h}$, where h is its current level.)
Solution: Let $h(t)$ be the level of the water and $V(t)$ its volume at time t. Clearly, $V=\pi R^{2} h$. Furthermore, $d V / d t=-\pi r^{2} \sqrt{2 g h}$. (Here πr^{2} is the area of the opening; the "-" sign indicates that the volume is decreasing.) Thus, we get an equation $\pi R^{2} h^{\prime}=-\pi r^{2} \sqrt{2 g h}$. Separate the variables and integrate:

$$
\sqrt{\frac{2 h}{g}}=C-\frac{r^{2}}{R^{2}} t . \quad \text { Hence, } \quad C=\sqrt{\frac{2 H}{g}} \quad \text { and } \quad t_{0}=\frac{R^{2}}{r^{2}} \sqrt{\frac{2 H}{g}} .
$$

(Here C is found from the initial condition $h(0)=H$, and the time t_{0} in question, from $h\left(t_{0}\right)=0$.)
Problem 4. A bullet of mass m is shot straight up at the velocity v_{0}. The air resistance is $|k v|$, where v is the current velocity of the bullet. Find the position (altitude) of the bullet at time t.
Solution: The equation is obtained immediately from Newton's second law: $m v^{\prime}=-m g-k v$. (Here $v=v(t)$ is the velocity of the bullet at time t and $v^{\prime}=a$, the acceleration.) Separate the variables, integrate, and resolve in v :

$$
\frac{m}{k} \ln \left|\frac{k}{m} v+g\right|=C-t, \quad \text { or } \quad v=C_{1} \exp \left(-\frac{k}{m} t\right)-\frac{m g}{k}, \quad \text { where } \quad C_{1}=\frac{m g}{k}+v_{0}
$$

(The constant is found from the condition $v(0)=v_{0}$.) Since $v=h^{\prime}$, to find h it remains to integrate the expression for v : (the constant of integration is found from $h(0)=0$)

$$
h(t)=\frac{m}{k}\left(\frac{m g}{k}+v_{0}\right)\left(1-e^{-\frac{k}{m} t}\right)-\frac{m g}{k} t .
$$

Problem 5. Solve the equation $y\left(x^{2} y^{2}-1\right) d x+x\left(x^{2} y^{2}+1\right) d y=0$.
Solution: Rewrite the equation as $x^{2} y^{2}(y d x+x d y)=y d x-x d y$. Divide by y^{2} to get $x^{2} d(x y)=d(x / y)$. Let $x y=u$ and $x / y=v$. Then $x^{2}=u v$ and the equation transforms into $u v d u=d v$. Separate the variables and integrate: $u^{2} / 2=\ln |v|+C$ or, in the old variables, $x^{2} y^{2}=\ln \left(x^{2} / y^{2}\right)+C_{1}$. Alternatively, after simplification, $x^{2}=C_{2} y^{2} e^{x^{2} y^{2}}$.

