Solutions to Final Exam

Problem 1. If possible, diagonalize the matrix and find an orthogonal basis in which it has diagonal form:

$$
A=\left[\begin{array}{rrr}
1 & 0 & -4 \\
0 & 5 & 4 \\
-4 & 4 & 3
\end{array}\right]
$$

Solution: The characteristic polynomial is $f_{A}(x)=x^{3}-9 x^{2}-9 x+81$. By trial and error one finds that $x=3$ is a root, and the division gives $f_{A}(x)=(x-3)\left(x^{2}-6 x-27\right)$. Hence, the two other roots are -3 and 9. All roots are real and simple, and the matrix is diagonalizable. The eigenvectors are found from the corresponding systems, and final answer is

$$
B=\left[\begin{array}{rrr}
3 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 9
\end{array}\right] \quad \text { in the basis } \quad\left\{\left[\begin{array}{r}
-2 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{r}
-2 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{r}
1 \\
-2 \\
-2
\end{array}\right]\right\} .
$$

The requirement to find an orthogonal basis was intentionally misleading. When all eigenvalues are distinct, the basis is rigid (one can only multiply vectors by numbers); on the other hand, since the original matrix is symmetric, the basis found is automatically orthogonal!

Problem 2. Find A^{-1} for

$$
A=\left[\begin{array}{rrrr}
-2 & 1 & 0 & 0 \\
1 & -2 & 1 & 0 \\
0 & 1 & -2 & 1 \\
4 & 0 & 1 & -2
\end{array}\right]
$$

Solution: I didn't mean you to use the discriminant formula for A^{-1}, though you can always use any way you prefer. Anyway, here is the answer:

$$
A^{-1}=\left[\begin{array}{rrrr}
-4 & -3 & -2 & -1 \\
-7 & -6 & -4 & -2 \\
-10 & -8 & -6 & -3 \\
-13 & -10 & -7 & -4
\end{array}\right]
$$

Problem 3. Evaluate

$$
\left|\begin{array}{rrrrr}
1 & 2 & 2 & 0 & 3 \\
0 & 1 & 2 & 0 & -1 \\
2 & 3 & 5 & 2 & 1 \\
1 & 1 & 2 & 1 & 1 \\
1 & 3 & 3 & 0 & 4
\end{array}\right| .
$$

Solution: The calculation is straightforward (simplifying the matrix via elementary transformations and using row/column expansion), and the correct answer is -2 .

Problem 4. Let A be an $(n \times n)$-matrix. Show that, if $\operatorname{det}\left(A-\lambda I_{n}\right)=0$ for some $\lambda \in \mathbb{R}$, then $\operatorname{det}\left(A^{2}-\right.$ $\left.\lambda^{2} I_{n}\right)=0$.
Solution: First approach: Note that $A^{2}-\lambda^{2} I_{n}=\left(A-\lambda I_{n}\right)\left(A+\lambda I_{n}\right)\left(\right.$ as A commutes with I_{n} and $\left.I_{n}^{2}=I_{n}\right)$. Then $\operatorname{det}\left(A^{2}-\lambda^{2} I_{n}\right)=\operatorname{det}\left(A-\lambda I_{n}\right) \operatorname{det}\left(A+\lambda I_{n}\right)=0$.

Second approach: The hypotheses mean that λ is an eigenvalue of A, i.e., there is a vector $\mathbf{x} \neq 0$ such that $A \mathbf{x}=\lambda \mathbf{x}$. Then $A^{2} \mathbf{x}=A(\lambda \mathbf{x})=\lambda^{2} \mathbf{x}$, i.e., λ^{2} is an eigenvalue of A^{2}.

Problem 5. Let P_{3} be the space of polynomials of degree up to 3 with the inner product

$$
(p, q)=p(1) \cdot q(1)+p^{\prime}(1) \cdot q^{\prime}(1)+p^{\prime \prime}(1) \cdot q^{\prime \prime}(1)+p^{\prime \prime \prime}(1) \cdot q^{\prime \prime \prime}(1)
$$

and $W=\operatorname{Span}\left\{1, t^{2}\right\}$. Find a basis for Ker proj_{W}.
Solution: First, note that Ker $\operatorname{proj}_{W}=W^{\perp}$ (why?). Hence, it is given by the equations $(p, 1)=\left(p, t^{2}\right)=0$. The first one gives $p(1)=0$, the second one, $p(1)+2 p^{\prime}(1)+2 p^{\prime \prime}(1)=0$. In the basis $\left\{1,(t-1),(t-1)^{2},(t-\right.$ $\left.1)^{3}\right\}$ the solution is immediate: $p=\alpha(t-1)^{3}+\beta\left[(t-1)^{2}-2(t-1)\right]$. Hence, one can take for a basis $\left\{(t-1)^{3},(t-1)^{2}-2(t-1)\right\}$.
Remark. Writing down a formula for proj_{W} and then finding its kernel is a lot of work! A common mistake was ignoring the fact that for the formula one needs an orthogonal basis in W.

