Solutions to Midterm II

Problem 1. Let P_4 be the space of polynomials of degree ≤ 4 . Prove that

$$(p,q) = \int_{-1}^{1} t^2 p(t)q(t) \, dt$$

is an inner product and, given this inner product, find a basis for W^{\perp} , where $W \subset P^4$ is the subspace spanned by 1, t-1, and $(t-1)^2$.

Solution: The expression in question is symmetric and bilinear, and we only need to check that it's positive definite. One has $(p,p) = \int_{-1}^{1} t^2 p^2 dt = \int_{-1}^{1} (tp)^2 dt \ge 0$. If the integral is 0, then, as tp is continuous, one must have tp = 0 identically on [-1,1] (cf. the proof for the standard integral inner product). As p is a polynomial, one gets p = 0.

Now, notice that $W = \text{Span}\{1, t-1, (t-1)^2\} = P_2 = \text{Span}\{1, t, t^2\}$. Thus, we can replace the given vectors with 1, t, t^2 :). Let $p = a_0 + a_1t + a_2t^2 + a_3t^3 + a_4t^4$. Then one has

$$(p,1) = \frac{2}{3}a_0 + \frac{2}{5}a_2 + \frac{2}{7}a_4 = 0, \quad (p,t^2) = \frac{2}{5}a_0 + \frac{2}{7}a_2 + \frac{2}{9}a_4 = 0, \quad \text{and} \quad (p,t) = \frac{2}{5}a_1 + \frac{2}{7}a_3 = 0.$$

From the last equation one gets $a_1 = -\frac{5}{7}a_3$. The first two form a system in a_0 , a_2 , a_4 , which is not the easiest one, but still solvable. The solution is $a_0 = \frac{5}{21}a_4$ and $a_2 = -\frac{10}{9}a_4$. Thus, one can take for a basis for W^{\perp} the polynomials $-5t + 7t^3$ and $15 - 70t^2 + 63t^4$.

Problem 2. The inner product on \mathbb{R}^4 is given by $(a,b) = a_1b_1 + a_2b_2 + 2a_3b_3 + 2a_4b_4$. Use the Gram-Schmidt process to find an orthonormal basis in $W = \text{Span}\{u_1, u_2, u_3\}$, where

$u_1 =$	$\begin{bmatrix} 1\\4\\-2\\0 \end{bmatrix}$,	$u_2 = -$	$5 \\ -1 \\ -1 \\ -1$,	$u_3 =$	$\begin{bmatrix} 10\\5\\-5\\11 \end{bmatrix}$	
				3			11	

SOLUTION: This one is really straightforward: just use the formulas. The Gram-Schmidt process gives

$$v_1 = u_1 = \begin{bmatrix} 1\\ 4\\ -2\\ 0 \end{bmatrix}, \quad v_2 = u_2 - v_1 = \begin{bmatrix} 4\\ 0\\ 1\\ 3 \end{bmatrix}, \quad v_3 = u_3 - 2v_1 - \frac{8}{3}v_2 = \begin{bmatrix} -8/3\\ -3\\ -11/3\\ 3 \end{bmatrix}.$$

For an orthonormal system these vectors should be normalized, i.e., divided, respectively, by 5, 6, and $\sqrt{61}$. Finally, one gets

	[1 ⁻			$\lceil 4 \rceil$			[-8]	
1	4		1	0		1	-9	
$\overline{5}$	-2	,	$\overline{6}$	1	,	$\overline{3\sqrt{61}}$	-11	•
				3		·	9	

Remark. When calculating the length, one should use the same inner product!

Problem 3. If A is nonsingular, prove that $A^{T}A$ is positive definite.

Solution: We need to show that $\mathbf{x}^{\mathrm{T}}(A^{\mathrm{T}}A)\mathbf{x} > 0$ for any $\mathbf{x} \neq 0$. One has $\mathbf{x}^{\mathrm{T}}(A^{\mathrm{T}}A)\mathbf{x} = (\mathbf{x}^{\mathrm{T}}A^{\mathrm{T}})A\mathbf{x} = (A\mathbf{x})^{\mathrm{T}}(A\mathbf{x}) = (A\mathbf{x}, A\mathbf{x}) > 0$ whenever $A\mathbf{x} \neq 0$ (where (\cdot, \cdot) stands for the standard inner product). Since A is nonsingular, $A\mathbf{x} = 0$ if and only if $\mathbf{x} = 0$.

Math 220-05

$$\int_{0}^{1} \left| p(t) + 3t - 5 \right|^{2} dt$$

is minimal possible.

Solution: Consider the space P_3 with the inner product $(p,q) = \int_0^1 pq \, dt$ and let $W \subset P_3$ be the subspace defined by p(1) = p'(1) = 0. Then the problem reduces to finding $\operatorname{proj}_W q$, where q = (5-3t) = 2-3(t-1).

One can take for a basis in W the polynomials $v_1 = (t-1)^2$ and $v_2 = (t-2)^3$ (cf. Midterm I). We need to orthogonalize it; applying the formulas gives us $u_1 = v_1$ and $u_2 = v_2 + \frac{5}{6}v_1$. (Leave it in this form!) Now, the projection is found by the formula:

$$p(t) = \frac{(q, u_1)}{(u_1, u_1)}u_1 + \frac{(q, u_2)}{(u_2, u_2)}u_2 = \frac{85}{12}u_1 + \frac{203}{10}u_2 = \left\lfloor 24(t-1)^2 + \frac{203}{10}(t-1)^3 \right\rfloor.$$

Remark. When evaluating integrals, keep the polynomials expanded in powers of (t-1) and use substitution. For the record: $(q, u_1) = 17/12$, $(u_1, u_1) = 1/5$, $(q, u_2) = 29/360$, and $(u_2, u_2) = 1/252$.

Remark. In this particular case it might be easier to use the other method: to keep the original basis and to solve explicitly the (2×2) -system for the coefficients of the projection.

Problem 5. Let

$$C = \begin{bmatrix} 3 & -2 \\ -2 & a \end{bmatrix}$$

Find the values of a for which the function $(x, y) = x^{\mathrm{T}} C y$ is an inner product on \mathbb{R}^2 .

Solution: The function (x, y) above is obviously bilinear and symmetric; hence, the only condition to be verified is whether it is positive definite. One has $(x, x) = 3x_1^2 - 4x_1x_2 + ax_2^2 = 3(x_1 - \frac{2}{3}x_2)^2 + (a - \frac{4}{3})x_2^2$. This expression is a **sum** of two squares if and only if the second coefficient, $a - \frac{4}{3}$, is positive. Thus, the

answer is $a > \frac{4}{3}$.