## Solutions to Midterm II

Problem 1. Let $P_{4}$ be the space of polynomials of degree $\leqslant 4$. Prove that

$$
(p, q)=\int_{-1}^{1} t^{2} p(t) q(t) d t
$$

is an inner product and, given this inner product, find a basis for $W^{\perp}$, where $W \subset P^{4}$ is the subspace spanned by $1, t-1$, and $(t-1)^{2}$.
Solution: The expression in question is symmetric and bilinear, and we only need to check that it's positive definite. One has $(p, p)=\int_{-1}^{1} t^{2} p^{2} d t=\int_{-1}^{1}(t p)^{2} d t \geqslant 0$. If the integral is 0 , then, as $t p$ is continuous, one must have $t p=0$ identically on $[-1,1]$ (cf. the proof for the standard integral inner product). As $p$ is a polynomial, one gets $p=0$.

Now, notice that $W=\operatorname{Span}\left\{1, t-1,(t-1)^{2}\right\}=P_{2}=\operatorname{Span}\left\{1, t, t^{2}\right\}$. Thus, we can replace the given vectors with $\left.1, t, t^{2}:\right)$. Let $p=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}$. Then one has

$$
(p, 1)=\frac{2}{3} a_{0}+\frac{2}{5} a_{2}+\frac{2}{7} a_{4}=0, \quad\left(p, t^{2}\right)=\frac{2}{5} a_{0}+\frac{2}{7} a_{2}+\frac{2}{9} a_{4}=0, \quad \text { and } \quad(p, t)=\frac{2}{5} a_{1}+\frac{2}{7} a_{3}=0
$$

From the last equation one gets $a_{1}=-\frac{5}{7} a_{3}$. The first two form a system in $a_{0}, a_{2}, a_{4}$, which is not the easiest one, but still solvable. The solution is $a_{0}=\frac{5}{21} a_{4}$ and $a_{2}=-\frac{10}{9} a_{4}$. Thus, one can take for a basis for $W^{\perp}$ the polynomials $-5 t+7 t^{3}$ and $15-70 t^{2}+63 t^{4}$.

Problem 2. The inner product on $\mathbb{R}^{4}$ is given by $(a, b)=a_{1} b_{1}+a_{2} b_{2}+2 a_{3} b_{3}+2 a_{4} b_{4}$. Use the Gram-Schmidt process to find an orthonormal basis in $W=\operatorname{Span}\left\{u_{1}, u_{2}, u_{3}\right\}$, where

$$
u_{1}=\left[\begin{array}{r}
1 \\
4 \\
-2 \\
0
\end{array}\right], \quad u_{2}=\left[\begin{array}{r}
5 \\
4 \\
-1 \\
3
\end{array}\right], \quad u_{3}=\left[\begin{array}{r}
10 \\
5 \\
-5 \\
11
\end{array}\right]
$$

Solution: This one is really straightforward: just use the formulas. The Gram-Schmidt process gives

$$
v_{1}=u_{1}=\left[\begin{array}{r}
1 \\
4 \\
-2 \\
0
\end{array}\right], \quad v_{2}=u_{2}-v_{1}=\left[\begin{array}{l}
4 \\
0 \\
1 \\
3
\end{array}\right], \quad v_{3}=u_{3}-2 v_{1}-\frac{8}{3} v_{2}=\left[\begin{array}{r}
-8 / 3 \\
-3 \\
-11 / 3 \\
3
\end{array}\right]
$$

For an orthonormal system these vectors should be normalized, i.e., divided, respectively, by 5,6 , and $\sqrt{61}$. Finally, one gets

$$
\frac{1}{5}\left[\begin{array}{r}
1 \\
4 \\
-2 \\
0
\end{array}\right], \quad \frac{1}{6}\left[\begin{array}{l}
4 \\
0 \\
1 \\
3
\end{array}\right], \quad \frac{1}{3 \sqrt{61}}\left[\begin{array}{r}
-8 \\
-9 \\
-11 \\
9
\end{array}\right] .
$$

Remark. When calculating the length, one should use the same inner product!
Problem 3. If $A$ is nonsingular, prove that $A^{\mathrm{T}} A$ is positive definite.
Solution: We need to show that $\mathbf{x}^{\mathrm{T}}\left(A^{\mathrm{T}} A\right) \mathbf{x}>0$ for any $\mathbf{x} \neq 0$. One has $\mathbf{x}^{\mathrm{T}}\left(A^{\mathrm{T}} A\right) \mathbf{x}=\left(\mathbf{x}^{\mathrm{T}} A^{\mathrm{T}}\right) A \mathbf{x}=$ $(A \mathbf{x})^{\mathrm{T}}(A \mathbf{x})=(A \mathbf{x}, A \mathbf{x})>0$ whenever $A \mathbf{x} \neq 0$ (where $(\cdot, \cdot)$ stands for the standard inner product). Since $A$ is nonsingular, $A \mathbf{x}=0$ if and only if $\mathbf{x}=0$.

Problem 4. Find the polynomial $p(t)$ of degree $\leqslant 3$ such that $p(1)=p^{\prime}(1)=0$ and the value of

$$
\int_{0}^{1}|p(t)+3 t-5|^{2} d t
$$

is minimal possible.
Solution: Consider the space $P_{3}$ with the inner product $(p, q)=\int_{0}^{1} p q d t$ and let $W \subset P_{3}$ be the subspace defined by $p(1)=p^{\prime}(1)=0$. Then the problem reduces to finding proj${ }_{W} q$, where $q=(5-3 t)=2-3(t-1)$.

One can take for a basis in $W$ the polynomials $v_{1}=(t-1)^{2}$ and $v_{2}=(t-2)^{3}$ (cf. Midterm I). We need to orthogonalize it; applying the formulas gives us $u_{1}=v_{1}$ and $u_{2}=v_{2}+\frac{5}{6} v_{1}$. (Leave it in this form!) Now, the projection is found by the formula:

$$
p(t)=\frac{\left(q, u_{1}\right)}{\left(u_{1}, u_{1}\right)} u_{1}+\frac{\left(q, u_{2}\right)}{\left(u_{2}, u_{2}\right)} u_{2}=\frac{85}{12} u_{1}+\frac{203}{10} u_{2}=24(t-1)^{2}+\frac{203}{10}(t-1)^{3} .
$$

Remark. When evaluating integrals, keep the polynomials expanded in powers of $(t-1)$ and use substitution. For the record: $\left(q, u_{1}\right)=17 / 12,\left(u_{1}, u_{1}\right)=1 / 5,\left(q, u_{2}\right)=29 / 360$, and $\left(u_{2}, u_{2}\right)=1 / 252$.

Remark. In this particular case it might be easier to use the other method: to keep the original basis and to solve explicitly the $(2 \times 2)$-system for the coefficients of the projection.

Problem 5. Let

$$
C=\left[\begin{array}{rr}
3 & -2 \\
-2 & a
\end{array}\right]
$$

Find the values of $a$ for which the function $(x, y)=x^{\mathrm{T}} C y$ is an inner product on $\mathbb{R}^{2}$.
Solution: The function $(x, y)$ above is obviously bilinear and symmetric; hence, the only condition to be verified is whether it is positive definite. One has $(x, x)=3 x_{1}^{2}-4 x_{1} x_{2}+a x_{2}^{2}=3\left(x_{1}-\frac{2}{3} x_{2}\right)^{2}+\left(a-\frac{4}{3}\right) x_{2}^{2}$. This expression is a sum of two squares if and only if the second coefficient, $a-\frac{4}{3}$, is positive. Thus, the answer is $a>\frac{4}{3}$.

