Solutions to Midterm 2

Problem 1. Let P_{4} be the space of polynomials of degree $\leqslant 4$. Prove that

$$
(p, q)=\int_{0}^{2}(t-1)^{2} p(t) q(t) d t
$$

is an inner product and, given this inner product, find a basis for $\operatorname{Ker} \operatorname{proj}_{W}$, where $W=\operatorname{Span}\left\{1, t, t^{2}\right\}$.
Solution: First, let's verify that (p, q) is an inner product. The facts that it is symmetric $((p, q)=(q, p))$ and bi-linear $((c p, q)=c(p, q)$ for $c \in \mathbb{R}$ and $(p+q, r)=(p, r)+(q, r))$ follow immediately from the properties of integrals. Since the integral of a nonnegative function is nonnegative, one also has $(p, p) \geqslant 0$. Finally, $(p, p)=0$ implies $p(t) \equiv 0$ because the integrand is continuous. (In general this is not true!) A common mistake was not understanding the difference between 'if' and 'only if' in the first axiom.

Since Ker $\operatorname{proj}_{W}=W^{\perp}$, we do not need the projection itself. (An attempt to write down a formula for the projection leads to a lengthy calculation and causes another common mistake: using the formula for a basis that is not orthogonal.) Finally, another simplification is to pick $\left\{1,(t-1),(t-1)^{2},(t-1)^{3},(t-1)^{4}\right\}$ for a basis in P_{4}, as this way many pairs of basis vectors are orthogonal. (Calculation of the products of basis vectors reduces then to the integral $\int_{0}^{2}(t-1)^{m} d t$, which equals 0 if m is odd or $2 /(m+1)$ if m is even.) Thus, pick a generic polynomial $p(t)=a_{0}+a_{1}(t-1)+a_{2}(t-1)^{2}+a_{3}(t-1)^{3}+a_{4}(t-1)^{4}$. The condition $(p, 1)=(p, t)=\left(p, t^{2}\right)=0$ gives us the system

$$
\frac{2}{3} a_{0}+\frac{2}{5} a_{2}+\frac{2}{7} a_{4}=0, \quad \frac{2}{5} a_{1}+\frac{2}{7} a_{3}=0, \quad \frac{2}{5} a_{0}+\frac{2}{7} a_{2}+\frac{2}{9} a_{4}=0
$$

which, though not extremely pleasant, still can be solved to yield $a_{0}=\frac{5}{21} a_{4}, a_{1}=-\frac{5}{7} a_{3}, a_{2}=-\frac{10}{9} a_{4}$. (Note that the system splits, in fact, into two, one in a_{0}, a_{2}, a_{4} and one in a_{1}, a_{3}.) Thus, one can take for a basis $\left\{7(t-1)^{3}-5(t-1), 63(t-1)^{4}-70(t-1)^{2}+15\right\}$.

Problem 2. The inner product on \mathbb{R}^{4} is given by $(a, b)=a_{1} b_{1}+2 a_{2} b_{2}+a_{3} b_{3}+2 a_{4} b_{4}$. Use the Gram-Schmidt process to find an orthonormal basis in $W=\operatorname{Span}\left\{u_{1}, u_{2}, u_{3}\right\}$, where

$$
u_{1}=\left[\begin{array}{c}
1 \\
-2 \\
4 \\
0
\end{array}\right], \quad u_{2}=\left[\begin{array}{c}
5 \\
-1 \\
4 \\
3
\end{array}\right], \quad u_{3}=\left[\begin{array}{c}
10 \\
-5 \\
5 \\
11
\end{array}\right]
$$

Solution: A very common mistake (-5 pts , no objections) was using the standard inner product (instead of the given one) to calculate the length of the vectors when normalizing them. The problems assumes a straightforward calculation using known formulas; it produces

$$
v_{1}=u_{1}\left[\begin{array}{c}
1 \\
-2 \\
4 \\
0
\end{array}\right], \quad v_{2}=u_{2}-\frac{25}{25} v_{1}=\left[\begin{array}{l}
4 \\
1 \\
0 \\
3
\end{array}\right], \quad v_{3}=u_{3}-\frac{50}{25} v_{1}-\frac{96}{36} v_{2}=\frac{1}{3}\left[\begin{array}{c}
-8 \\
-11 \\
-9 \\
9
\end{array}\right]
$$

and, after normalization, $w_{1}=\frac{1}{5} v_{1}, w_{2}=\frac{1}{6} v_{2}, w_{3}=\frac{1}{\sqrt{61}} v_{3}$.
Problem 3. Given a fixed $(m \times n)$-matrix A, define a transformation $L_{A}: M_{n p} \rightarrow M_{m p}$ via $L_{A}(X)=A X$ (where, as usual, $M_{n p}$ and $M_{m p}$ are the spaces of $(n \times p)$ - and, respectively, $(m \times p)$-matrices). Prove that $\operatorname{rk} L_{A}=p \operatorname{rk} A$. (Hint: Ker L_{A} admits an easy explicit description in terms of the null space of A.)

Solution: To find $\operatorname{Ker} L_{A}$ one needs to solve the matrix equation $A X=0$. Here X, as an $(n \times p)$-matrix, can be regarded as consisting of p independent columns, $X=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right]$, and in order to satisfy the equation each column \mathbf{x}_{i} must be a solution to the ordinary system $A \mathbf{x}_{i}=0$, i.e., \mathbf{x}_{i} must belong to the null space of A. Thus, $\operatorname{dim} \operatorname{Ker} L_{A}=p$ nullity A, and $\operatorname{rk} L_{A}=\operatorname{dim} \operatorname{Im} L_{A}=\operatorname{dim} M_{n p}-\operatorname{dim} \operatorname{Ker} L_{A}=n p-p$ nullity $A=$ $p(n-\operatorname{nullity} A)=p \operatorname{rk} A$.

Problem 4. Find the polynomial $p(t)$ of degree $\leqslant 3$ such that $p(0)=p^{\prime}(0)=0$ and the value of

$$
\int_{0}^{1}|p(t)-3 t-2|^{2} d t
$$

is minimal possible.
Solution: Sorry. For an aesthetic reason I wrote $p(t)-3 t-2$ instead of $3 t+2-p(t)$. I didn't expect such a dramatic effect ... Of course, one should consider P_{3} with the inner product $(p, q)=\int_{0}^{1} p q d t$ and find the projection of $u=3 t+2$ to the subspace W where p is allowed to vary. The latter is given by the conditions $p(0)=p^{\prime}(0)=0$, i.e., p has the form $a t^{3}+b t^{2}$ and $W=\operatorname{Span}\left\{t^{2}, t^{3}\right\}$. To find the projection we need to orthogonalize the basis; the Gram-Schmidt yields $v_{1}=t^{2}$ and $v_{2}=t^{3}-\frac{5}{6} t^{2}$. A direct calculation gives then $\left(u, v_{1}\right)=\frac{17}{12},\left(v_{1}, v_{1}\right)=\frac{1}{5}$ and $\left(u, v_{2}\right)=-\frac{29}{360},\left(v_{2}, v_{2}\right)=\frac{1}{36 \cdot 7}$. (By the way, it may be a good practice to not multiply right away, as this way you can easier see cancellations in your further calculation.) Finally, we have $p=\operatorname{proj}_{W} u=\frac{85}{12} t^{2}-\frac{203}{10}\left(t^{3}-\frac{5}{6} t^{2}\right)=24 t^{2}-\frac{203}{10} t^{3}$.

Problem 5. The transformation $L: P_{4} \rightarrow P_{2}$ is given by

$$
p(t) \mapsto p(-2)+(t-1) p^{\prime}(-2)+(t-1)^{2} p^{\prime \prime}(-2)
$$

Find its rank and bases for $\operatorname{Ker} L$ and $\operatorname{Im} L$.
Solution: Take $\left\{1,(t+2),(t+2)^{2},(t+2)^{3},(t+2)^{4}\right\}$ for a basis in P_{4} and let $p=a_{0}+a_{1}(t+2)+a_{2}(t+2)^{2}+$ $a_{3}(t+2)^{3}+a_{4}(t+2)^{4}$. Since $1,(t-1)$, and $(t-1)^{2}$ are linearly independent, the condition $L[p]=0$ for Ker L turns into $p(-2)=p^{\prime}(-2)=p^{\prime \prime}(-2)=0$, i.e., $a_{0}=a_{1}=a_{2}=0$. Thus, $(t+2)^{3}$ and $(t+2)^{4}$ form a basis in Ker L. (I don't want to even discuss the calculation in the standard basis; it must be horrible, and this was deliberate.) Since $\operatorname{dim} \operatorname{Ker} L=2$ and $\operatorname{dim} P_{4}=5$, one has $\operatorname{rk} L=\operatorname{dim} \operatorname{Im} L=5-2=3$, and, as also $\operatorname{dim} P_{2}=3$, the image of L coincides with P_{2} and any basis of P_{2}, say, $\left\{1, t, t^{2}\right\}$ will do. (By the way, there is no such thing as rk $\operatorname{Ker} L$ or $\operatorname{rk} \operatorname{Im} L$; there are $\operatorname{dim} \operatorname{Ker} L$, $\operatorname{dim} \operatorname{Im} L$, and rk L; the latter, by definition, is $\operatorname{dim} \operatorname{Im} L$ or, else, the rank of the matrix representing L with respect to any pair of bases.)

