Solutions to Midterm 1

Problem 1. Find a basis for the solution space of the system

$$\begin{cases} 2x_1 - 6x_2 + 6x_3 + 5x_4 - x_5 = 0\\ x_1 - 3x_2 + 2x_3 + x_4 = 0\\ 2x_1 - 6x_2 + 4x_4 = 3\\ 3x_1 - 9x_2 - 6x_4 - x_5 = -4 \end{cases}$$

Solution: Sorry, the problem was misstated. Certainly, only a homogeneous system may have a solution space. Nevertheless, let's solve the system first. Writing down its augmented matrix and converting it to a reduced row echelon form yields

$$\begin{bmatrix} 1 & -3 & 0 & 0 & 0 & 1/4 \\ 0 & 0 & 1 & 0 & 0 & 17/16 \\ 0 & 0 & 0 & 1 & 0 & 5/8 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}; \quad \text{hence, the solution is} \quad X = s \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1/4 \\ 0 \\ -7/16 \\ 5/8 \\ 1 \end{bmatrix}.$$

The complete correct answer (5 pts extra credit) would now be something like this: the system is not homogeneous, hence, it has no solution space; however, a basis for the solution space of the corresponding homogeneous system is $\{\begin{bmatrix} 3 & 1 & 0 & 0 \end{bmatrix}^T$.

Problem 2. Prove that there is no (3×3) -matrix A with

	0	1	1]			[1	1	0]
$A^3 =$	0	0	1	and	$A^7 =$	1	0	0
	0	0	0			0	0	0

(where A^n stands for the *n*-fold product AA...A).

Solution: Let B and C be the two given matrices (i.e., the ones that are supposed to be A^3 and A^7 ,

SOLUTION: Let *B* and *C* be the two given matrices (i.e., the ones that are supposed to be A^3 respectively. Here are at least three ways to solve the problem. 1st way: Observe that $BC = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \neq CB = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$, while $A^3A^7 = A^{10} = A^7A^3$ must be equal. 2nd way: Observe that $B^7 = 0 \neq C^3 = \begin{bmatrix} 3 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, while $(A^3)^7 = A^{21} = (A^7)^3$ must be equal. 3rd way: Observe that $B^2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and, hence, $A^7 = B^2 * A = \begin{bmatrix} a_{31} & a_{32} & a_{33} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \neq C$.

Problem 3. Find the transition matrix $P_{S\leftarrow T}$, where T is the standard basis in \mathbb{R}^n and

$$S = \left\{ \begin{bmatrix} 0\\2\\1\\3 \end{bmatrix}, \begin{bmatrix} 2\\-1\\3\\4 \end{bmatrix}, \begin{bmatrix} -2\\1\\5\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\2 \end{bmatrix} \right\}.$$

Solution: Of course, $P_{S\leftarrow T} = A^{-1}$, where A is the matrix composed of the given vectors. The answer is

$$P_{S\leftarrow T} = \begin{bmatrix} 0 & 2 & -2 & 0\\ 2 & -1 & 1 & 1\\ 1 & 3 & 5 & 0\\ 3 & 4 & 2 & 2 \end{bmatrix}^{-1} = \frac{1}{28} \begin{bmatrix} 30 & 32 & 12 & -16\\ 5 & -4 & 2 & 2\\ 9 & -4 & 2 & 2\\ -46 & -36 & -24 & 32 \end{bmatrix}.$$

Problem 4. Find rank A and a basis for the column space of A, where

$$A = \begin{bmatrix} 0 & 2 & 3 & 1 & 3 \\ 1 & 1 & -1 & -1 & 1 \\ -1 & 1 & 4 & 2 & 2 \\ 2 & 0 & -4 & 3 & 1 \end{bmatrix}.$$

Solution: One should either convert A^{T} to (reduced) row echelon form and take the transposes of the nontrivial rows of the result, or convert A to row echelon form and take the columns of the **original** matrix A whose numbers correspond to the columns of the row echelon form containing leading entries. The first way yields

$$A^{\mathrm{T}} \sim \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}; \qquad \text{hence, a basis is} \quad \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right\};$$

the second way yields

$$A \sim \begin{bmatrix} 1 & 1 & -1 & -1 & 1 \\ 0 & 2 & 3 & 1 & 3 \\ 0 & 0 & 1 & 6 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}; \quad \text{hence, a basis is} \quad \left\{ \begin{bmatrix} 0 \\ 1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 4 \\ -4 \end{bmatrix} \right\}.$$

Both the solutions give rank A = 3.

Problem 5. Find a basis for the space $V \subset P_4$ of polynomials p of degree up to 4 such that

$$p(5) = \frac{\partial p}{\partial t}(5) = \frac{\partial^2 p}{\partial t^2}(5) = \frac{\partial^3 p}{\partial t^3}(5).$$

Solution: For the basis in P_4 take $\{1, (t-5), (t-5)^2, (t-5)^3, (t-5)^4\}$. Then the given condition on a polynomial $p(t) = a_0 + a_1(t-5) + a_2(t-5)^2 + a_3(t-5)^3 + a_4(t-5)^4$ is $a_0 = a_1 = 2a_2 = 6a_3$. Thus, a_4 and a_3 are arbitrary and one has $a_2 = 3a_3$, $a_1 = 6a_3$, and $a_0 = 6a_3$. Giving (a_4, a_3) the values (1, 0) and (0, 1), we obtain a basis:

{
$$(t-5)^4$$
, $(t-5)^3 + 3(t-5)^2 + 6(t-5) + 6$ }.

The dimension of the space is 2.