Solutions to Midterm 1

Problem 1. Find a basis for the solution space of the system

$$
\left\{\begin{array}{rlr}
2 x_{1}-6 x_{2}+6 x_{3}+5 x_{4}-x_{5} & =0 \\
x_{1}-3 x_{2}+2 x_{3}+x_{4} & =0 \\
2 x_{1}-6 x_{2}+4 x_{4} & =3 \\
3 x_{1}-9 x_{2}-6 x_{4}-x_{5} & =-4
\end{array}\right.
$$

Solution: Sorry, the problem was misstated. Certainly, only a homogeneous system may have a solution space. Nevertheless, let's solve the system first. Writing down its augmented matrix and converting it to a reduced row echelon form yields

$$
\left[\begin{array}{cccccc}
1 & -3 & 0 & 0 & 0 & 1 / 4 \\
0 & 0 & 1 & 0 & 0 & 17 / 16 \\
0 & 0 & 0 & 1 & 0 & 5 / 8 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right] ; \quad \text { hence, the solution is } X=s\left[\begin{array}{l}
3 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
1 / 4 \\
0 \\
-7 / 16 \\
5 / 8 \\
1
\end{array}\right]
$$

The complete correct answer (5 pts extra credit) would now be something like this: the system is not homogeneous, hence, it has no solution space; however, a basis for the solution space of the corresponding homogeneous system is $\left\{\left[\begin{array}{lllll}3 & 1 & 0 & 0 & 0\end{array}\right]^{\mathrm{T}}\right\}$.

Problem 2. Prove that there is no (3×3)-matrix A with

$$
A^{3}=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \quad \text { and } \quad A^{7}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

(where A^{n} stands for the n-fold product $A A \ldots A$).
Solution: Let B and C be the two given matrices (i.e., the ones that are supposed to be A^{3} and A^{7}, respectively. Here are at least three ways to solve the problem.
1st way: Observe that $B C=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \neq C B=\left[\begin{array}{lll}0 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$, while $A^{3} A^{7}=A^{10}=A^{7} A^{3}$ must be equal.
2nd way: Observe that $B^{7}=0 \neq C^{3}=\left[\begin{array}{lll}3 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$, while $\left(A^{3}\right)^{7}=A^{21}=\left(A^{7}\right)^{3}$ must be equal.
3rd way: Observe that $B^{2}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and, hence, $A^{7}=B^{2} * A=\left[\begin{array}{ccc}a_{31} & a_{32} & a_{33} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \neq C$.
Problem 3. Find the transition matrix $P_{S \leftarrow T}$, where T is the standard basis in \mathbb{R}^{n} and

$$
S=\left\{\left[\begin{array}{l}
0 \\
2 \\
1 \\
3
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
3 \\
4
\end{array}\right],\left[\begin{array}{c}
-2 \\
1 \\
5 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
2
\end{array}\right]\right\}
$$

Solution: Of course, $P_{S \leftarrow T}=A^{-1}$, where A is the matrix composed of the given vectors. The answer is

$$
P_{S \leftarrow T}=\left[\begin{array}{cccc}
0 & 2 & -2 & 0 \\
2 & -1 & 1 & 1 \\
1 & 3 & 5 & 0 \\
3 & 4 & 2 & 2
\end{array}\right]^{-1}=\frac{1}{28}\left[\begin{array}{cccc}
30 & 32 & 12 & -16 \\
5 & -4 & 2 & 2 \\
9 & -4 & 2 & 2 \\
-46 & -36 & -24 & 32
\end{array}\right]
$$

Problem 4. Find $\operatorname{rank} A$ and a basis for the column space of A, where

$$
A=\left[\begin{array}{ccccc}
0 & 2 & 3 & 1 & 3 \\
1 & 1 & -1 & -1 & 1 \\
-1 & 1 & 4 & 2 & 2 \\
2 & 0 & -4 & 3 & 1
\end{array}\right]
$$

Solution: One should either convert A^{T} to (reduced) row echelon form and take the transposes of the nontrivial rows of the result, or convert A to row echelon form and take the columns of the original matrix A whose numbers correspond to the columns of the row echelon form containing leading entries. The first way yields

$$
A^{\mathrm{T}} \sim\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] ; \quad \text { hence, a basis is } \quad\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

the second way yields

$$
A \sim\left[\begin{array}{ccccc}
1 & 1 & -1 & -1 & 1 \\
0 & 2 & 3 & 1 & 3 \\
0 & 0 & 1 & 6 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] ; \quad \text { hence, a basis is }\left\{\left[\begin{array}{c}
0 \\
1 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
3 \\
-1 \\
4 \\
-4
\end{array}\right]\right\}
$$

Both the solutions give rank $A=3$.
Problem 5. Find a basis for the space $V \subset P_{4}$ of polynomials p of degree up to 4 such that

$$
p(5)=\frac{\partial p}{\partial t}(5)=\frac{\partial^{2} p}{\partial t^{2}}(5)=\frac{\partial^{3} p}{\partial t^{3}}(5) .
$$

Solution: For the basis in P_{4} take $\left\{1,(t-5),(t-5)^{2},(t-5)^{3},(t-5)^{4}\right\}$. Then the given condition on a polynomial $p(t)=a_{0}+a_{1}(t-5)+a_{2}(t-5)^{2}+a_{3}(t-5)^{3}+a_{4}(t-5)^{4}$ is $a_{0}=a_{1}=2 a_{2}=6 a_{3}$. Thus, a_{4} and a_{3} are arbitrary and one has $a_{2}=3 a_{3}, a_{1}=6 a_{3}$, and $a_{0}=6 a_{3}$. Giving (a_{4}, a_{3}) the values $(1,0)$ and $(0,1)$, we obtain a basis:

$$
\left\{(t-5)^{4}, \quad(t-5)^{3}+3(t-5)^{2}+6(t-5)+6\right\} .
$$

The dimension of the space is 2 .

