\qquad
Time: 15:00-17:30
\qquad

MATH 220 MAKE-UP FINAL EXAM

IMPORTANT

1. This exam consists of 6 questions of equal weight.
2. Each question is on a separate sheet. Please read the questions carefully and write your answers under the corresponding questions. Be neat.
3. Show all your work. Correct answers without sufficient explanation might not get full credit.
4. Calculators are not allowed.

Please do not write anything below this line.

1	2	3	4	5	6	TOTAL
20	20	20	20	20	20	120

1. Let $L: P_{2} \rightarrow P_{2}$ be given by $p(t) \mapsto p(1)+4 p^{\prime \prime}(1) t+p^{\prime}(1) t^{2}$. Find the eigenvalues and eigenvectors of L. Is L diagonalizable?
2. Show that there is no linear transformation $L: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ such that

$$
\operatorname{Ker} L=\left\{x \in \mathbb{R}^{5} \mid x_{1}=x_{2}, x_{3}=x_{4}=x_{5}\right\} .
$$

3. Define the trace of a square $(n \times n)$-matrix $A=\left[a_{i j}\right]_{1 \leq i, j \leq n}$ to be trace $A=\sum_{i=1}^{n} a_{i i}$. Prove or disprove:
4. $\operatorname{trace}(\alpha A)=\alpha$ trace $A, \alpha \in \mathbb{R}$;
5. $\operatorname{trace}(A B)=\operatorname{trace} A \cdot \operatorname{trace} B$;
6. $\operatorname{trace}(A B)=\operatorname{trace}(B A)$.
7. Let P_{3} be the space of polynomials of degree up to 3 with the inner product

$$
(p, q)=p(1) \cdot q(1)+p^{\prime}(1) \cdot q^{\prime}(1)+p^{\prime \prime}(1) \cdot q^{\prime \prime}(1)+p^{\prime \prime \prime}(1) \cdot q^{\prime \prime \prime}(1)
$$

and $W=\operatorname{Span}\left\{1, t^{2}\right\}$. Find a basis for W^{\perp}.
5. Define an inner product on the space $M_{3,3}$ of (3×3)-matrices via $(A, B)=\operatorname{trace}\left(A^{\mathrm{T}} B\right)$ (see Problem 3 for the definition of trace). Use the Gramm-Schmidt process to orthonormalize the system

$$
A_{1}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], \quad A_{3}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] .
$$

6. Evaluate

$$
\left|\begin{array}{rrrrr}
1 & 2 & 2 & 0 & 3 \\
0 & 1 & 2 & 0 & -1 \\
2 & 3 & 5 & 2 & 1 \\
1 & 1 & 2 & 1 & 1 \\
1 & 3 & 3 & 0 & 4
\end{array}\right| .
$$

