## Homework \#5

(due on $1 / 6$ )
1: Prove that, if $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converge and $a_{n} \leqslant c_{n} \leqslant b_{n}$ for all $n$, then $\sum_{n=1}^{\infty} c_{n}$ also converges. (Warning: we do not assume that the terms are positive!) What can be said about $\sum_{n=1}^{\infty} c_{n}$ if $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ both diverge?

2: Show that, if $\lim _{n \rightarrow \infty} n a_{n}$ exists and is not equal to 0 , then the series $\sum_{n=1}^{\infty} a_{n}$ diverges. Show that, if $a_{n}$ is a decreasing sequence and $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} n a_{n}=0$. Does the latter statement hold without the assumption that $a_{n}$ is decreasing?

3: Test for convergence:

$$
\sum_{n=1}^{\infty} \frac{2^{n} n!}{n^{n}}, \quad \sum_{n=1}^{\infty}(\sqrt{2}-\sqrt[3]{2})(\sqrt{2}-\sqrt[5]{2}) \ldots(\sqrt{2}-\sqrt[2 n+1]{2}), \quad \sum_{n=2}^{\infty}\left(\frac{n-1}{n+1}\right)^{n(n-1)}
$$

4: Test for absolute/conditional convergence:

$$
\sum_{n=2}^{\infty} \sin \frac{n \pi}{12}(\ln n)^{-1}, \quad \sum_{n=2}^{\infty} \ln \left(1+\frac{(-1)^{n}}{n}\right), \quad \sum_{n=1}^{\infty} \frac{(-1)^{[\sqrt{n}]}}{n^{p}}, p \in \mathbb{R}
$$

where $[x]$ stands for the integral part of $x \in \mathbb{R}$.
5: Assume that all functions $u_{n}(x), n \in \mathbb{N}$, are continuous on a segment $[a, b]$ and the limit $f(x):=\lim _{n \rightarrow \infty} u_{n}(x)$ exists and is also continuous. Is the convergence of the sequence $u_{n}(x)$ uniform on $[a, b]$ ?

## Homework \#4

(due on $12 / 9$ )
1: ('Bezout's theorem' for arbitrary functions). Assume that $f(x)$ is continuous in a neighborhood of $a \in \mathbb{R}$. Under what conditions on $f$ does $(x-a)$ 'divide' $f$, i.e., the function $g(x):=f(x) /(x-a)$ has a continuous extension through $a$ ? What is $g(a)$ ?
2: Under what conditions on $m, n \in \mathbb{R}$ the function

$$
f(x)= \begin{cases}|x|^{m} \sin \frac{1}{|x|^{n}}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

(1) is continuous at 0 ?
(2) is differentiable at 0 ?
(3) has bounded derivative in a neighborhood of 0 ?
(4) is continuously differentiable at 0 ?

3: Prove that the Legendre polynomial $P_{m}(x):=\frac{1}{2^{m} m!} \frac{d^{m}}{d x^{m}}\left(x^{2}-1\right)^{m}$ satisfies the differential equation $\left(1-x^{2}\right) P_{m}^{\prime \prime}(x)-2 x P_{m}^{\prime}(x)+m(m+1) P_{m}(x)=0$.

4: Prove that, if all roots of a polynomial $f(x)$ are real and belong to a segment $[a, b]$, then all roots of $f^{\prime}(x)$ are also real and belong to $[a, b]$. (Attention: do not forget that a polynomial may have multiple roots!) Prove that all roots of the Legendre polynomial $P_{m}(x)$ are real and belong to $(-1,1)$.

5: Prove that, if $f(x)$ is differentiable on $(a, b)$ and $f^{\prime}(x)$ is bounded, then $f(x)$ is also bounded. Does the converse hold?

## Homework \#3

(due on $11 / 1$ )
Let us discuss limits and continuity. In all problems, $f$ is a function defined on a certain domain $D \subset \mathbb{R}$. When speaking about limits, we assume that $a$ is an accumulation point of $D$.

1: True or false: $\lim _{x \rightarrow a} f(x)=L$ if and only if, for any increasing sequence $x_{n} \in D, x_{n} \neq a, x_{n} \rightarrow a$ one has $f\left(x_{n}\right) \rightarrow L ?$
2: True or false: $\lim _{x \rightarrow a} f(x)=L$ if and only if, for any monotonous sequence $x_{n} \in D, x_{n} \neq a, x_{n} \rightarrow a$ one has $f\left(x_{n}\right) \rightarrow L$ ?

3: Let us try to get rid of $L$ in the definition of limit. True or false: $f$ has a limit at $x \rightarrow a$ if and only if, for any $\varepsilon>0$ there exists $\delta>0$ such that, whenever $x_{1}, x_{2} \in$ $D \backslash\{a\},\left|x_{1}-x_{2}\right|<\delta$, and $\left|x_{i}-a\right|<\delta$ for $i=1,2$, one has $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\varepsilon$ ?
4: What should be changed in $\# 3$ to obtain a criterion for ' $f$ is continuous at $a$ '?
5: True or false: $f$ is continuous on $D$ if and only if, for any $\varepsilon>0$ there exists $\delta>0$ such that, whenever $x_{1}, x_{2} \in D$ and $\left|x_{1}-x_{2}\right|<\delta$, one has $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\varepsilon$ ?

Now, think again and explain what it is that you have just defined.

## Homework \#2

(due on 10/18)
1: Compute $\sqrt{2}^{\sqrt{2}} \begin{aligned} & \sqrt{2} \ldots\end{aligned}$. Hint: consider the sequence $a_{n}$ defined recursively via $a_{1}=\sqrt{2}, a_{n}=\sqrt{2}^{a_{n-1}}$ for $n \geqslant 2$. Find its limit, if exists.

2: Prove that the set of real numbers is unique up to isomorphism. Hint: assume that there are two sets $\mathbb{R}_{1}, \mathbb{R}_{2}$ satisfying all axioms and show that there is a unique $\operatorname{map} f: \mathbb{R}_{1} \rightarrow \mathbb{R}_{2}$ preserving the arithmetical operations and order. To this end, try to construct $f$ 'algebraically' as far as possible (done in class) and then extend it by continuity (explain what this means and why it works). Then use 'general nonsense' to show that such a map $f$ is necessarily an isomorphism (here, the uniqueness is a hint).

## Homework \#1

(due on 10/11)
38/7: (a) Let $a$ be a fixed real number, and define $x_{n}:=a$ for $n \in \mathbb{N}$. Prove that the 'constant' sequence $x_{n}$ converges.
(b) What does $x_{n}$ converge to?

38/8: Suppose that $x_{n}$ is a sequence in $\mathbb{R}$. Prove that $x_{n}$ converges to $a$ if and only if every subsequence of $x_{n}$ converges to $a$.

44/4: Suppose that $x \in \mathbb{R}, x_{n} \geqslant 0$, and $x_{n} \rightarrow x$ as $n \rightarrow \infty$. Prove (without using the continuity of $\sqrt{x}$ ) that $\sqrt{x_{n}} \rightarrow \sqrt{x}$ as $n \rightarrow \infty$.
44/5: Prove that, given $x \in \mathbb{R}$, there is a sequence $r_{n} \in \mathbb{Q}$ such that $r_{n} \rightarrow x$ as $n \rightarrow \infty$.

44/9: Interpret a decimal expansion $0 . a_{1} a_{2} \ldots$ as

$$
0 . a_{1} a_{2} \ldots=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{a_{k}}{10^{k}}
$$

Prove that (a) $0.5=049999 \ldots$ and (b) $1=0.9999 \ldots$.

