Homework #5

(due on 1/6)

1: Prove that, if $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge and $a_n \leq c_n \leq b_n$ for all n, then $\sum_{n=1}^{\infty} c_n$ also converges. (*Warning*: we do not assume that the terms are positive!) What can be said about $\sum_{n=1}^{\infty} c_n$ if $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both diverge?

2: Show that, if $\lim_{n\to\infty} na_n$ exists and is not equal to 0, then the series $\sum_{n=1}^{\infty} a_n$ diverges. Show that, if a_n is a decreasing sequence and $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} na_n = 0$. Does the latter statement hold without the assumption that a_n is decreasing?

3: Test for convergence:

$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}, \quad \sum_{n=1}^{\infty} (\sqrt{2} - \sqrt[3]{2})(\sqrt{2} - \sqrt[5]{2}) \dots (\sqrt{2} - \sqrt[2n+1]{2}), \quad \sum_{n=2}^{\infty} \left(\frac{n-1}{n+1}\right)^{n(n-1)}$$

4: Test for absolute/conditional convergence:

$$\sum_{n=2}^{\infty} \sin \frac{n\pi}{12} (\ln n)^{-1}, \quad \sum_{n=2}^{\infty} \ln \left(1 + \frac{(-1)^n}{n} \right), \quad \sum_{n=1}^{\infty} \frac{(-1)^{\lceil \sqrt{n} \rceil}}{n^p}, \ p \in \mathbb{R},$$

where [x] stands for the integral part of $x \in \mathbb{R}$.

5: Assume that all functions $u_n(x)$, $n \in \mathbb{N}$, are continuous on a segment [a, b] and the limit $f(x) := \lim_{n \to \infty} u_n(x)$ exists and is also continuous. Is the convergence of the sequence $u_n(x)$ uniform on [a, b]?

Homework #4 (due on 12/9)

1: ('Bezout's theorem' for arbitrary functions). Assume that f(x) is continuous in a neighborhood of $a \in \mathbb{R}$. Under what conditions on f does (x - a) 'divide' f, *i.e.*, the function g(x) := f(x)/(x - a) has a continuous extension through a? What is g(a)?

2: Under what conditions on $m, n \in \mathbb{R}$ the function

$$f(x) = \begin{cases} |x|^m \sin \frac{1}{|x|^n}, & x \neq 0, \\ 0, & x = 0 \end{cases}$$

- (1) is continuous at 0?
- (2) is differentiable at 0?
- (3) has bounded derivative in a neighborhood of 0?
- (4) is continuously differentiable at 0?

3: Prove that the Legendre polynomial $P_m(x) := \frac{1}{2^m m!} \frac{d^m}{dx^m} (x^2 - 1)^m$ satisfies the differential equation $(1 - x^2)P''_m(x) - 2xP'_m(x) + m(m+1)P_m(x) = 0.$ 1 **4:** Prove that, if all roots of a polynomial f(x) are real and belong to a segment [a, b], then all roots of f'(x) are also real and belong to [a, b]. (Attention: do not forget that a polynomial may have multiple roots!) Prove that all roots of the Legendre polynomial $P_m(x)$ are real and belong to (-1, 1).

5: Prove that, if f(x) is differentiable on (a, b) and f'(x) is bounded, then f(x) is also bounded. Does the converse hold?

Homework #3

(due on 11/1)

Let us discuss limits and continuity. In all problems, f is a function defined on a certain domain $D \subset \mathbb{R}$. When speaking about limits, we assume that a is an accumulation point of D.

1: True or false: $\lim_{x\to a} f(x) = L$ if and only if, for any *increasing* sequence $x_n \in D, x_n \neq a, x_n \to a$ one has $f(x_n) \to L$?

2: True or false: $\lim_{x\to a} f(x) = L$ if and only if, for any *monotonous* sequence $x_n \in D, x_n \neq a, x_n \to a$ one has $f(x_n) \to L$?

3: Let us try to get rid of *L* in the definition of limit. True or false: *f* has a limit at $x \to a$ if and only if, for any $\varepsilon > 0$ there exists $\delta > 0$ such that, whenever $x_1, x_2 \in D \setminus \{a\}, |x_1 - x_2| < \delta$, and $|x_i - a| < \delta$ for i = 1, 2, one has $|f(x_1) - f(x_2)| < \varepsilon$?

4: What should be changed in #3 to obtain a criterion for 'f is continuous at a'?

5: True or false: f is continuous on D if and only if, for any $\varepsilon > 0$ there exists $\delta > 0$ such that, whenever $x_1, x_2 \in D$ and $|x_1 - x_2| < \delta$, one has $|f(x_1) - f(x_2)| < \varepsilon$?

Now, think again and explain what it is that you have just defined.

Homework #2 (due on 10/18)

1: Compute $\sqrt{2}^{\sqrt{2}^{\sqrt{2}\dots}}$. *Hint*: consider the sequence a_n defined recursively via $a_1 = \sqrt{2}, a_n = \sqrt{2}^{a_{n-1}}$ for $n \ge 2$. Find its limit, if exists.

2: Prove that the set of real numbers is unique up to isomorphism. *Hint*: assume that there are two sets \mathbb{R}_1 , \mathbb{R}_2 satisfying all axioms and show that there is a *unique* map $f: \mathbb{R}_1 \to \mathbb{R}_2$ preserving the arithmetical operations and order. To this end, try to construct f 'algebraically' as far as possible (done in class) and then extend it by continuity (explain what this means and why it works). Then use 'general nonsense' to show that such a map f is necessarily an isomorphism (here, the uniqueness is a hint).

Homework #1

(due on 10/11)

38/7: (a) Let a be a fixed real number, and define $x_n := a$ for $n \in \mathbb{N}$. Prove that the 'constant' sequence x_n converges.

(b) What does x_n converge to?

38/8: Suppose that x_n is a sequence in \mathbb{R} . Prove that x_n converges to a if and only if **every** subsequence of x_n converges to a.

44/4: Suppose that $x \in \mathbb{R}$, $x_n \ge 0$, and $x_n \to x$ as $n \to \infty$. Prove (without using the continuity of \sqrt{x}) that $\sqrt{x_n} \to \sqrt{x}$ as $n \to \infty$.

44/5: Prove that, given $x \in \mathbb{R}$, there is a sequence $r_n \in \mathbb{Q}$ such that $r_n \to x$ as $n \to \infty$.

44/9: Interpret a decimal expansion $0.a_1a_2...$ as

$$0.a_1a_2\ldots = \lim_{n \to \infty} \sum_{k=1}^n \frac{a_k}{10^k}.$$

Prove that (a) 0.5 = 049999... and (b) 1 = 0.9999....