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Throughout these notes, I stands for the unit segment [0, 1] ⊂ R; this is a
standard convention in homotopy theory.

Most proof in these notes are straightforward and left as exercises.

1 The fundamental group

1.1 Paths and homotopies
Let X be a topological space. (You can think of a metric space, Riemann surface,
open subset of C, etc.) A path in X is a continuous map γ : I → X . A homotopy
of paths is a continuous map h : I × I → X; intuitively, this is a continuous 1-
parameter family of paths hs(t) := h(t, s). The notion of homotopy extends to any
maps Y 7→ X , a homotopy being a continuous map Y × I → X . Occasionally, a
subspace B ⊂ Y is fixed and it is required that h(y, s) = h(y, 0) for all s ∈ I and
y ∈ B, i.e., that all points of B should stay put during the deformation.

Convention 1.1. Free homotopies of paths are not very interesting, as any path
would be homotopic to constant. Therefore, from now on we adopt the following
convention: unless stated otherwise, a path homotopy h : I×I → X must preserve
the endpoints, so that h(0, s) = const and h(1, s) = const.

A path homotopy h : I × I → X is a homotopy between the paths

α := h0 : t 7→ h(t, 0) and β := h1 : t 7→ h(t, 1),

and we say that α and β are connected by h. Two paths α, β connected by a path
homotopy are said to be homotopic, α ∼ β.

Proposition 1.2. “Homotopic” is an equivalence relation, i.e., it is reflexive, sym-
metric, and transitive. Therefore, all paths in X split into homotopy classes; the
homotopy class of γ is denoted by [γ]. ◁

By Convention 1.1, the endpoints γ(0), γ(1) are the same within a class [γ].
Given two paths α, β : I → X such that α(1) = β(0), their product is the path

(α · β)(t) :=

{
α(2t), if t ∈ [0, 1/2],

β(2t− 1), if t ∈ [1/2, 1].

The inverse of α is the path

α−1(t) := α(1− t).
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The constant paths are

ex(t) := x = const, x ∈ X.

The next few statement are proved by constructing appropriate piecewise linear
functions I × I → I = I × 0. Note that the “homotopic” in the statements is
essential: none of the conclusions holds for individual paths. (Explain!)

Proposition 1.3 (associativity). One has (α ·β) · γ ∼ α · (β · γ) provided that one
of the sides is defined (then so is the other).

Proposition 1.4 (identity). One has eα(0) · α ∼ α ∼ α · eα(1).

Proposition 1.5 (inverse). One has α · α−1 ∼ eα(0) and α−1 · α ∼ eα(1).

Proposition 1.6 (homotopy invariance). If α ∼ α′, β ∼ β′, then α · β ∼ α′ · β′.

1.2 The fundamental group
A loop is a path γ such that γ(0) = γ(1); we will also say that γ is a loop at
x0 := γ(0) = γ(1). From now on we consider based (or pointed) topological
spaces, i.e., pairs (X, x0), where x0 ∈ X is a distinguished basepoint. Note that
any two loops at x0 can be multiplied, the result being a loop at x0. Hence, the
following definition makes sense.

Definition 1.7. The fundamental group π1(X, x0) is the set of (path) homotopy
classes of loops at x0, regarded as a group (see Propositions 1.3–1.6) with respect
to the path product. Typically, this group is non-abelian.

Since the fundamental group is made out of loops (a special case of paths),
it contains absolutely no information about the path components of X other than
that containing x0. Therefore, from now on we consider only path connected
topological spaces.

Example 1.8. Recall that we have vaguely defined a simply connected space as
one where each simple closed curve is contractible. More precisely, for a path
connected space X , the following statements are equivalent:

1. π1(X, x0) = 1 for any point x0 ∈ X;

2. any map S1 → X is (freely) homotopic to a constant map;
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3. any map S1 = ∂D2 → X extends to D2 → X .

These equivalent properties constitute the simple connectedness of X . Their
equivalence is essentially a tautology; still, some work needs to be done (like
explaining that loops are the same as maps S2 → X or observing that I2, with or
without part of the boundary contracted to a point, is the same as D2).

Thus, π1(X) measures the extent to which X is not simply connected.

Example 1.9. One has π1(S
1) = π1(C∖0) = Z. (Later, in §1.3, we will see that,

as an abstract group, π1 is independent of the base point.) The only homotopy
invariant of a loop γ is the “number of times” it wraps about the circle or its
“index” with respect to 0:

ind0 γ :=
1

2πi

∫
γ

dz

z
.

(Of course, the latter formula is an overkill.) A rigorous proof will be given later,
see Corollary 2.18.

Example 1.10. The group π1(C ∖ ±1) is the free (non-abelian) group on two
generators, e.g., the classes of the circles |z ± 1| = 1. We will not prove this fact.

The fundamental group is a functor: a continuous map f : (X, x0) → (Y, y0)
(this notation assumes that f(x0) = y0) induces a homomorphism

f∗ : π1(X, x0) → π1(Y, y0), [α] 7→ [f ◦ α],

so that
id∗ = id and (f ◦ g)∗ = f∗ ◦ g∗.

1.3 The translation homomorphism
We have to keep track of the basepoint in order to have π1 as a functor. However,
as an abstract group, π1(X, x0) does not depend on x0 (provided that this point is
chosen within the same path component of X). More precisely, a path γ : I → X
gives rise to the translation homomorphism

Tγ : π1(X, γ(0)) → π1(X, γ(1)), [α] 7→ [γ−1αγ].

Using Propositions 1.3–1.6, one can easily show that Tγ is well defined and is
indeed a homomorphism. Furthermore, one has

Tγ·δ = Tδ ◦ Tγ, Te = id .
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It follows that all Tγ are, in fact, isomorphisms: T−1
γ = Tγ−1 . Besides, Tγ depends

on the path homotopy class of γ only. If γ itself is a loop at x0, then Tγ is the
inner automorphism [α] 7→ [γ]−1 · [α] · [γ]. Thus, if π1(X) happens to be abelian,
all groups π1(X, x) are canonically isomorphic; otherwise, the isomorphisms are
only canonical up to an inner automorphism.

2 Coverings
The theory of covering spaces is one of those rare cases where a homotopy-
theoretic invariant, viz. the fundamental group, gives us a complete solution to
a geometric problem.

2.1 Covering spaces
A covering (do not mix with open coverings considered, e.g., in the definition of
compactness) of a topological space B is a map p : X → B such that each point
b ∈ B has a well-covered neighborhood, i.e., a neighborhood U ∋ b whose pull-
back p−1(U) is a disjoint union

⊔
α Uα of “copies” of U , so that each restriction

p : Uα → U is a homeomorphism. The terminology is as follows:

• B is the base of the covering,

• X is the total or covering space, and

• p is the covering projection.

The pull-backs p−1(b), b ∈ B, are called fibers.
We will mainly confine ourselves with the coverings in the strict sense, i.e., we

will assume that both the base B and covering space X are path connected. In this
case, the degree deg p := |p−1(b)| (which may be finite or infinite) is independent
of b ∈ B (as it is obviously locally constant; immediately from the definition).

Example 2.1. For any space B, the identity id : B → B is a trivial covering, of
degree 1.

Example 2.2. Let S1 := {|z| = 1|} ⊂ C be the unit circle. Then the restriction
n : S1 → S1 of the map z 7→ zn is a covering of degree n. The map u : R → S1,
t 7→ eit, is a covering of degree ∞. The latter map can also be visualized using
the helix, i.e., the parametrized curve

x = cos t, y = sin t, z = t, t ∈ R
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in R3. The helix itself is homeomorphic to R (e.g., the projection to the z-axis),
whereas its projection to the xy-plane is a covering of the unit circle {x2+y2 = 1}.
It is like an infinite spring squeezed to a wire ring.

Example 2.3. Likewise, the map z 7→ zn is a covering n : C ∖ 0 → C ∖ 0 of
degree n, whereas z 7→ ez is a degree ∞ covering exp: C → C ∖ 0. In both
cases, for a well-covered neighborhood of a point b ∈ C ∖ 0 one can take the
sector

{α− π < argw < α + π},
where α is any fixed value of arg b.

Warning 2.4. Coverings are not to be mixed with local homeo-(diffeo-, or such)
morphisms, which are “good” locally in the domain X rather than target B (which
is a much weaker condition). In Example 2.2, the restriction of the projection to
any open interval of the helix would be a local diffeomorphism, but not a covering:
the “images” of the two endpoints of the interval would have no well-covered
neighborhoods. Similarly (cf. Example 2.3), any holomorphic function f : U → C
with nowhere vanishing derivative is a local diffeomorphism, but typically not a
covering.

2.2 Path and homotopy lifting
The next two statements are the main technical tool used in the study of coverings.

Lemma 2.5 (path lifting). Given a covering p : X → B, a path γ : I → B starting
at b0 := γ(0), and a point x0 ∈ p−1(b0), there is a unique lift γ̃ : I → X of γ
starting at x0, i.e., path γ̃ : I → X such that γ̃(0) = x0 and p ◦ γ̃ = γ.

Proof. Since I is compact, by Lebesgue lemma applied to the open covering (in
the old sense!) γ−1(U) by the well-covered neighborhood, there is a subdivision
t0 < t1 < . . . < tn, ti := i/n, i = 0, . . . , n, such that each image γ[ti−1, ti] fits
into a well-covered neighborhood. Then the lift is constructed and its uniqueness
is proved step-by-step, by induction in i. At each step, the image γ[ti−1, ti] is in
a well-covered neighborhood U and γ̃(ti−1) ∈ Uα (see the definition) is already
defined; hence, we have no choice but to extend γ̃ by “the same path” γ in the
identical copy Uα of U .

Lemma 2.6 (homotopy lifting). Given a covering p : X → B, a (free) homotopy
h : I2 → B, and a lift γ̃ : I → X of the path γ(t) := h(t, 0), there is a unique lift
h̃ : I2 → X of h such that h̃(t, 0) = γ̃(t).
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The proof repeats that of Lemma 2.5: we subdivide I2 into squares Sij of size
(1/n)× (1/n), ordered lexicographically, and construct the lift square by square,
extending what is already given on (part of) the boundary.

Corollary 2.7 (of Lemma 2.6). Let p : X → B be a covering. Pick a point x0 ∈ X
and denote b0 := p(x0) ∈ B. Then the induced homomorphism

p∗ : π1(X, x0) → π1(B, b0)

is a monomorphism, so that π1(X, x0) is identified with a subgroup of π1(B, b0).

The subgroup π1(X, x0) ⊂ π1(B, b0) is called the group of the covering p; its
elements are the loops in B that lift to loops (rather than just paths) in X . (Note
that Lemma 2.5 does not guarantee that a loop lifts to a loop!) Strictly speaking,
this subgroup is defined for a based covering of a based space, i.e., the basepoints
x0 and b0 should be fixed. The covering p is called regular, or Galois, if this
subgroup is normal.

Corollary 2.8 (of Lemmas 2.5 and 2.6). Under the assumptions of Corollary 2.7,
there is a canonical bijection p−1(b0) = π1(X, x0)\π1(B, b0).

Proof. The construction is very typical for the theory of covering spaces. Given
x ∈ p−1(b0), consider a path γ̃ : I → X connecting x0 to x. (Recall that all spaces
are assumed path connected.) Then p ◦ γ̃ is a loop in B, and we take its coset for
the image of x. Conversely, given a loop γ at b0, lift it to a path γ̃ in X starting
from x0 and let x := γ̃(1). The result is homotopy invariant. Furthermore, since
any loop α ∈ π1(X, x0) lifts to a loop α̃, the lift of α · γ is α̃ · γ̃, which has the
same endpoint γ̃(1).

2.3 Covering maps
Let pi : Xi → Bi, i = 1, 2, be two coverings. A covering map (over a map
f : B1 → B2) is a map f̃ : X1 → X2 which makes the diagram

X1
f̃−−−→ X2

p1

y p2

y
B1

f−−−→ B2

commute: p2◦f̃ = f ◦p1. Below, we mainly stick to the case where B1 = B2 = B
and f = id: B → B. In this case, f̃ is itself a covering. (Explain!)
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Example 2.9 (cf. Example 2.2). We have covering maps

S1 n−−−→ S1 R ũ−−−→ S1

nm

y m

y u

y m

y
S1 S1, S1 S1,

where ũ : t 7→ exp(it/m). There are similar diagrams involving the coverings in
Example 2.3.

For the sake of simplicity, in the next theorem we confine ourselves to based
coverings of based topological spaces. The statement can be rephrased for the
general case, but one would have to speak about conjugacy classes of subgroups,
subconjugate groups, etc; this is left as an exercise.

Theorem 2.10. Let pi : (Xi, xi) → (B, b0), i = 1, 2, be two based coverings, so
that pi(xi) = b0. Then, a covering map f̃ : (X1, x1) → (X2, x2) (over the identity
of B), x1 7→ x2, exists if and only if π1(X1, x1) ⊂ π1(X2, x2).

Furthermore, if exists, such a map is unique.

Proof. The necessity follows from the functoriality of π1. For the sufficiency,
we explain the construction of f̃ , leaving technical details as an exercise. (This
construction is also very common in the theory.) By the assumption, we have
f̃(x1) = x2. Given x ∈ X1, find a path γ1 : I → X1 from x1 to x, project it to the
path γ := p1 ◦ γ1 in B, and lift the latter to a path γ2 in X2 starting from x2. Then,
let f̃(x) = γ2(1). The assumption that π1(X1, x1) ⊂ π1(X2, x2) (and, eventually,
Lemma 2.6) make sure that this value is independent of the choice of γ1.

Corollary 2.11. Two based coverings pi : (Xi, xi) → (B, b0) are isomorphic (in
the category of based coverings) if and only if π1(X1, x1) = π1(X2, x2) is the
same subgroup of π1(B, b0).

2.4 The universal covering
Due to Theorem 2.10 and Corollary 2.11, it appears that based coverings of a
based topological space (B, b0) are essentially the same as subgroups of π1(B, b0),
except that we do not know yet if any subgroup corresponds to a covering. The
“smallest” covering, corresponding to the largest subgroup π1(B) itself, is the
trivial covering id : B → B (see Example 2.1). On the other hand, Theorem 2.10
suggests that the “largest” covering of B, covering all others, must be the one
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corresponding to the smallest subgroup π1(X, x) = {1}; in other words, X must
be simply connected, cf. Example 1.8. If exists, such a covering would be unique
up to isomorphism by Corollary 2.11.

Definition 2.12. A covering p : X → B is called the universal covering of B if
X is simply connected, π1(X) = {1}, cf. Example 1.8.

Example 2.13. The coverings u : R → S1 in Example 2.2 and exp: C → C ∖ 0
in Example 2.3 are universal.

Theorem 2.14. Any “good’ topological space admits a universal covering.

Hint for the proof. As a set, the total space X is the set of homotopy classes of
paths starting at a fixed point b0 ∈ B, and the covering map is [γ] 7→ γ(1). Then,
one should work hard to define the topology on X and check that this is indeed
the universal covering. The standard “good” conditions are that B should be

1. connected,

2. locally path connected, i.e., any neighborhood U of any point b ∈ B has a
path connected subneighborhood V ∋ b, and

3. micro simply connected, i.e., any neighborhood U of any point b ∈ B has a
subneighborhood V ∋ b such that the homomorphism π1(V, b) → π1(U, b)
induced by the inclusion V ↪→ U is trivial.

Further details can be found in any reasonable textbook in homotopy theory.

2.5 Deck translations
A deck translation (deck transformation, or covering transformation) of a cover-
ing p : X → B is an auto-covering map X → X over the identity of B. Using a
generalization of Theorem 2.10, one can easily show that deck translations consti-
tute a group, which we denote by Aut(X,B). The simplest case is that of Galois
coverings (use path/homotopy lifting lemmas for the proof).

Theorem 2.15. If p : (X, x0) → (B, b0) is a Galois covering, then there is a
canonical isomorphism Aut(X,B) = π1(B, b0)/π1(X, x0). Furthermore, this
group acts simply transitively on each fiber and one has B ∼= X/Aut(X,B).

Not every group action can be realised as an action by deck translations of
a covering. A more or less literal paraphrase of the definition boils down to the
following description: a group action G × X → X on a topological space X is
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a covering space action if each point x ∈ X has a neighborhood U ∋ x such
that all images gU , g ∈ G, are pairwise disjoint. If this is the case, the quotient
projection X → X/G is a Galois covering (the image of each U as above being a
well-covered neighborhood) and G is its deck translation group.

Corollary 2.16. The deck translation group of the universal covering X → B is
isomorphic to π1(B).

Corollary 2.17. If B admits a universal covering X → B, it admits a covering
corresponding to any subgroup G ⊂ π1(B).

Proof. If π1(B) × X → X is a covering space action, so is the action of any
subgroup G ⊂ π1(B); then, X/G → B = X/π1(B) is the desired covering.

Corollary 2.18 (of Corollary 2.16). One has π1(S
1) = π1(C∖ 0) = Z.

Proof. We compute the deck translations of the universal coverings u : R → S1

(see Example 2.2) and exp: C → C ∖ 0 (see Example 2.3); they are the affine
translations t 7→ t+ 2πn and z 7→ z + 2πin, n ∈ Z, respectively.

3 Uniformization
Let S be a Riemann surface, which we assume connected. Clearly, any covering
space X → S is canonically a Riemann surface. Indeed, each point s ∈ S has a
holomorphic chart φ : U → V ⊂ C and, shrinking U if necessary, we can assume
it well covered, so that p−1(U) =

⊔
α Uα. Then, the restrictions φ ◦ p : Uα → V

can be declared holomorphic charts about the pull-backs of s. In fact, this analytic
structure on X is uniquely determined by the requirement that p be holomorphic.

The same argument shows that, conversely, given a Riemann surface X and
a subgroup G ⊂ AutX (holomorphic automorphisms) such that the restricted
action G×X → X is a covering space action, then the quotient X/G is a Riemann
surface and the covering projection X → X/G is holomorphic.

The following statement is immediate from the construction.

Proposition 3.1. Any covering map f̃ : X1 → X2 over the identity id : S → S
(or, more generally, holomorphic self-map f : S → S) is holomorphic.

Obviously, any Riemann surface S satisfies the hypotheses of Theorem 2.14
and, hence, admits a universal covering X → S. The conformal type of X is
uniquely determined by that of S (cf. Proposition 3.1). On the other hand, since
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X is simply connected, it must be one of P1, C, or D := {|z| < 1}. (We have
partially proved this fact in the homeworks.) Combining all these observations,
we obtain the following theorem.

Theorem 3.2 (uniformization). Any Riemann surface S can be represented as
X/G, where X ∼= P1, C, or D and G ⊂ AutX is a subgroup such that the
induced action G × X → X is a covering space action. The surface X and the
(AutX)-conjugacy class of G ⊂ AutX are uniquely determined by S.

Remark 3.3. In the particular case of Riemann surfaces, the condition on the
subgroup G ⊂ AutX in Theorem 3.2 can be restated as follows:

1. each element 1 ̸= g ∈ G is fixed point free, and

2. each point x ∈ X has a neighborhood U such that U ∩Gx = {x}.

The latter condition implies that G ⊂ AutX is discrete. Probably, the easiest way
to prove the sufficiency of these condition is using a metric on X invariant under
(a relevant subgroup of) AutX , cf. §3.1–§3.3 below.

In order to classify the simplest Riemann surfaces that are not simply con-
nected (most notably, those with π1(S) = Z), we briefly consider the three cases
X = P1, C, or D in Theorem 3.2.

3.1 The case X = P1

The only covering P1 → S is the trivial one, id : P1 → P1. Indeed, AutP1 is the
Möbius group and we know that each Möbius transformation has fixed points, cf.
Remark 3.3(1).

Remark 3.4. There is a deeper, topological reason why the only coverings with
P1 as the total space are id : P1 → P1 and the covering P1 → P2

R := S2/{±1} of
degree 2. The argument uses compactness (each covering must be finite), Euler
characteristic, and the so-called Riemann–Hurwitz formula. The real projective
plane P2

R admits no analytic structure as it is non-orientable.

3.2 The case X = C
The group AutC consists of the affine linear transformations z 7→ az + b, which
are fixed point free if and only if a = 1 (and b ̸= 0). Thus, in this case, in
Theorem 3.2 we can replace AutC with C, acting on itself by translations.
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Lemma 3.5. A subgroup G := Zm ⊂ Rn is discrete if and only if its R-span has
dimension m (equal to the Z-rank).

Hint for the proof. Crucial is the following simple number-theoretic observation:
given t ∈ R, the subgroup G := {mt + n |m,n ∈ Z} spanned by t and 1 is Z if
t ∈ Q or dense in R if t is irrational. The latter, in turn, is based on the less known
fact that, for each n > 0, there is a pair pn, qn ∈ Z, qn > n, such that∣∣∣∣t− pn

qn

∣∣∣∣ < 1

q2n
.

(These are usually constructed via the Farey sequences, see, e.g., Wikipedia.)
Hence, for the elements an := pnt − qn ∈ G, we have 0 < |an| < 1/qn < 1/n.
(Recall that an ̸= 0 as t is irrational.) Now, it is clear that the union of the sub-
groups Zan ⊂ G, n ∈ Z+, is dense in R.

The higher dimensional case is treated via coordinate projections: a subgroup
cannot be discrete if in at least one direction the projections of its generators are
incommensurable.

Thus, we have but two possibilities: G = Z or G = Z⊕ Z.

Case 1: G ∼= Z. Up to conjugation in the full group AutC, we can assume that
G is generated by 1 ∈ C, i.e., z 7→ z + 1. The corresponding covering is

C → C∖ 0, z 7→ exp(2πiz).

(Here and below, the covering projection is found by a guesswork.)

Case 2: G ∼= Z ⊕ Z. Up to conjugation in AutC, we can assume that G is
generated by 1 and some τ ∈ H. Topologically, the quotient C/G is a torus
T 2 (same as C/Z2); however, the analytic structure on this surface depends on a
continuous parameter τ . Since we can change the basis in G, this parameter is
well defined up to the action of the modular group PSL(2,Z); usually, it is chosen
in the fundamental domain {|z| ⩾ 1, |Im z| ⩽ 1/2}. (For the true uniqueness,
one should also remove part of the boundary of this hyperbolic triangle.) The
Riemann surfaces obtained in this way are called elliptic curves.
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3.3 The case X = D ∼= H
We have AutH = PSL(2,R), and an easy exercise (done in class) shows that
any fixed point free element g ∈ AutH is conjugate to either T : z 7→ z + 1 or
Rα : z 7→ αz, α ∈ R+ ∖ 1. Combining with the results of §3.1 and §3.2, we
conclude that the fundamental group of any Riemann surface is torsion free.

Another exercise in linear algebra shows that any element g ∈ AutH commut-
ing with T is z 7→ z + β, β ∈ R, and any g commuting with Rα is Rβ , β ∈ R+.
Hence, any discrete abelian subgroup G (see Remark 3.3) lies in a 1-parameter
subgroup isomorphic to R; therefore, it can only be Z (cf. Lemma 3.5).

Case 1: G ∼= Z generated by T . The covering projection is

C → D∖ 0, z 7→ exp(−2πiz).

Case 2: G ∼= Z generated by Rα. The covering projection is

C → Ar := {1 < |w| < r}, z 7→ exp(β ln z), (3.6)

where β := 2πi/α and r := exp(πβ).
In particular, we conclude that the annuli Ar, r ∈ (1,∞), are pairwise non-

isomorphic! (Besides, none of them is isomorphic to C∖ 0 or D∖ 0.) This gives
us an example of a continuous family of pairwise distinct Riemann surfaces.

Generalizing, two annuli {ri < |z| < Ri}, 0 < ri < Ri < ∞, i = 1, 2, are iso-
morphic if and only if R1/r1 = R2/r2. Indeed, applying the linear transformation
z 7→ z/r, we can always assume that the inner radius equals 1.

3.4 Conclusion: Riemann surfaces with abelian fundamental
group

Thus, we have obtained a complete list of Riemann surfaces with the “smallest”,
meaning abelian, fundamental groups:

• If π1(S) = 0, then S ∼= P1, C, or D; the last two are homeomorphic.

• If π1(S) = Z, then, apart from C∖ 0 and D∖ 0, there is a real 1-parameter
family of annuli Ar, see (3.6); all surfaces are homeomorphic.

• If π1(S) = Z ⊕ Z, then topologically S is a torus, but there is a complex
1-parameter family of pairwise distinct analytic structures.
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3.5 Conclusion: Riemann surfaces by their “geometry”
Another way to classify Riemann surfaces is according to their “geometry”, i.e.,
whether they admit a (properly compatible with the analytic structure) complete
Riemannian metric of constant Gaussian curvature K:

• elliptic, or spherical (K > 0): the Riemann sphere P1;

• parabolic, or Euclidean (K = 0): the “flat” surfaces C, C∖0 and all elliptic
curves (see Case 2 in §3.2);

• hyperbolic (K < 0): everything else.

In the last two cases, we use that fact that the groups C ⊂ AutC (see §3.2) and
AutH act by isometries of, respectively, the Euclidean metric on C and hyperbolic
metric on H. Hence, these metrics descend to any Riemann surface covered by C
or H. (Explain!)

In particular, we see that the vast majority of Riemann surfaces (all but the tori
T 2 or the sphere S2 punctured in at most 2 points) are hyperbolic (and a hyperbolic
metric is essentially equivalent to an analytic structure), which makes hyperbolic
geometry quite important.
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