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1 Glossary
These terms and notation are used throughout the paper.

A domain is a connected open subset U ⊂ C.
A certain property P is said to hold locally on a domain U if each point a ∈ U

has a neighborhood in which P holds.
A curve is a piecewise smooth curve C ⊂ C. By definition, C admits a

piecewise smooth parameterization, i.e., C is the image of a continuous map
φ : [a, b] → C such that there is a partition a0 := a < a1 < a2 < . . . < an := b
with φ continuously differentiable on each [ak−1, ak], k = 1, . . . , n.

A curve C is closed if φ(a) = φ(b); it is simple closed if it is closed and has
no self-intersections, i.e., if φ(t1) ̸= φ(t2) for any pair t1 < t2 other than t1 = a,
t2 = b. The following intuitive statement is known as Jordan curve theorem: A
simple closed curve dividesC into two connected domains, of which exactly one is
bounded. The bounded domain U above is called the interior of the simple closed
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curve C (not to be mixed with the interior in the point-set topological sense); we
write C = ∂U and always assume that C is oriented counterclockwise. Other
common names are as follows: C bounds U , or U is bounded by C, or a point
z ∈ U is inside C (appealing to common sense, but contradicting to set theory),
or C surrounds a point z ∈ U .

Unless stated otherwise, we consider a complex valued function f : U → C
defined on a domain U ⊂ C; the standard notation used throughout is

z = x+ iy, f(x+ iy) = u(x, y) + iv(x, y). (1.1)

We always assume f at least continuous.

2 Complex integration
Given a function f : U → C as in (1.1) and a curve C ∈ U , we define the integral∫

C

f(z)dz =

∫
C

(u+ iv)(dx+ idy) =

∫
C

u dx− v dy + i

∫
C

v dy + u dx.

Given a smooth parameterization z(t) for C, the “substitution” reduces this to the
usual Riemann integral ∫

C

f(z)dz =

∫ b

a

f(z(t))z′(t)dt.

Note that this is the usual Calculus 101 integral (and z′(t) is the usual derivative
with respect to a single real variable) of a complex valued function. Technically,
this means that the real and imaginary parts are to be computed separately. For
holomorphic functions, we will usually have better ways.

Here are the basic properties:∫
C

(αf + βg)dz = α

∫
C

f dz + β

∫
C

g dz, α, β = const (linearity);∫
C1∪C2

f(z)dz =

∫
C1

f(z)dz +

∫
C2

f(z)dz (additivity);∫
−C

f(z)dz = −
∫
C

f(z)dz (orientation);∣∣∣∣∫
C

f(z)dz

∣∣∣∣ ⩽ ∫
C

|f(z)| ds ⩽ max
z∈C

|f(z)| · length(C) (ML-bound).
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The last property is often use to establish all kinds of convergence, like

if fn → f uniformly on C, then
∫
C

fn(z)dz →
∫
C

f(z)dz.

Typically, the integral depends on the integrant f and the curve C. We say that
the integral of f is path independent if

∫
C
f(z)dz =

∫
D
f(z)dz whenever the two

curves C and D share the same starting and ending points. Note that this implies
that

∫
C
f(z)dz = 0 for any closed curve C.

In a sense, the example of an integral is (for n ∈ Z)∫
|z|=1

zndz =

{
2πi, if n = −1

0, otherwise.
(2.1)

3 Holomorphic functions
This is our principal subject in complex analysis. Roughly, holomorphic are the
differentiable functions; however, they have a number of other definitions.

3.1 Many definitions of holomorphic functions
A continuous function f : U → C as in (1.1) is called holomorphic (or analytic)
if it has any one of the following equivalent properties:

1. f has a continuous complex derivative f ′(z) on U ;

2. the functions u, v are continuously differentiable (as real functions of two
real arguments) and satisfy the Cauchy–Riemann equations

ux = vy, uy = −vx. (3.1)

3. f has complex derivatives f (n)(z) of all orders;

4. f is locally representable by a power series, i.e., each point c ∈ U has a
neighborhood in which f is given by a power series centered at c, see §5.1;

5. locally, f has an anti-derivative, i.e., function F such that F ′ = f ;

6. the integral of f is locally path independent;

7.
∫
C
f(z)dz = 0 for any simple closed curve C ⊂ U whose interior is in U ;
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8. (Morera’s theorem)
∫
C
f(z)dz = 0 for any rectangle C ⊂ U whose sides

are parallel to the axes and whose interior is in U .

Due to (3.1), the components u, v of a holomorphic function are harmonic:

uxx + uyy = 0, vxx + vyy = 0.

Given a harmonic function u, locally there exists v, unique up to constant, such
that f := u+ iv is holomorphic.

3.2 Notes on path independence
Items 5 and 6 in §3.1 are also equivalent “globally” (i.e., f has an anti-derivative
on the whole domain U iff the integral of f is path independent), and both are
equivalent to either of items 7, 8 with the requirement that the interior of C should
be in U dropped. Throughout this section (except item 4) the word “locally” can
be interpreted as “on any simply connected (see §4) domain V ⊂ U”.

Practically, the local path independence means that
∫
C
f(z)dz does not change

if one varies the curve C continuously, provided that C remains in U and the
endpoints of C stay fixed (unless C is closed). This observation should always
be kept in mind when computing integrals of holomorphic functions: usually, one
can replace C with a more convenient curve.

3.3 Examples
All “rules” (sum/difference/product/quotient/chain) of Calculus 101 and algebra
work, and all formulas for (anti-)derivatives apply whenever they make sense
(most notable exception being the formulas involving ln and inverse trigonomet-
ric functions, which are not quite well defined on C). Examples of holomorphic
functions are polynomials, rational functions (away from the roots of the denom-
inator),

ez := ex(cos y + i sin y), sin z :=
eiz − e−iz

2i
, cos z :=

eiz + e−iz

2
,

and various combinations thereof.
Examples of valid identities are

(zn)′ = nzn−1 (n ∈ Z),
∫

zndz =
zn+1

n+ 1
(n ∈ Z, n ̸= −1)
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(I systematically drop the integration constant in anti-derivatives),

(ez)′ = ez,

∫
ezdz = ez, ez+w = ezew,

(sin z)′ = cos z, sin2 z + cos2 z = 1, sin 2z = 2 sin z cos z.

However, extreme care should be taken when working with functions like

ln z := ln|z|+ i arg z,

as well as radicals and inverse trigonometric functions (which can all be expressed
in terms of ln): just like arg z, they are not quite well defined, even if the origin is
removed. (One should make cuts to pass to a simply connected domain, see §4.)
Thus, we have

(ln z)′ =
1

z
,

∫
dz

z
= ln z,

∫
dz

z
̸= ln|z|.

Here, the last formula (from Calculus 101) is hopelessly wrong, as | · | over C
is much more “destructive” than over R. The first two work provided that z is
restricted to a domain U where ln makes sense (and a branch of ln is chosen);
typically, one would take for U the plane with a ray arg z = const (including 0)
removed, with the effect of restricting arg z to an open interval of length 2π.

Example 3.2. There is no simple “rule” establishing the (non-)existence of an
anti-derivative in more complicated situations. For example, on U := C∖ [−i, i],∫

dz

1 + z2
= arctan z :=

1

2i
ln

i+ z

i− z

is well-defined, whereas a very similar function z/(1 + z2) has no anti-derivative
on U . You need to compute the integrals, see Example 4.2.

4 Simple connectedness
We are not in a position to treat this subject rigorously, so let us use our geometric
intuition. A domain U ⊂ C is simply connected if it has no “holes”. Important
for us is the fact that, in a simply connected domain U , the region bounded by a
simple closed curve C ⊂ U is also in U ; therefore, we can use Green’s theorem.
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Remark 4.1. In the textbook, a domain U ⊂ C is called simply connected if the
complement (C ∪∞)∖ U is connected. (Observe that we are speaking about the
complement in the extended plane C∪∞: this is crucial!) More generally, in this
approach, “holes” can be defined as the connected components of (C ∪∞) ∖ U
not containing ∞ (i.e., all but one). Although this definition does provide a certain
rigour, it is limited to open subsets of C, is based on hard algebraic topology (the
so-called Alexander duality), and, most importantly, it is absolutely unclear how
it can be used with statements like Green’s theorem!

Common examples of simply connected domains are:

• the plane C itself,

• the extended plane C ∪∞,

• the region bounded by a simple closed curve,

• the plane C with a number of infinite cuts, i.e., pairwise disjoint unbounded
rays removed.

Examples of the last option are (in the hope that the vague notation is understood)

• C ∖ (−∞, 0]: one cut. This domain is “good” for ln and
√

; one can also
consider C∖ {arg z = const};

• C ∖
(
(−i∞,−i] ∪ [i, i∞)

)
: two cuts; “good” for the anti-derivative of the

function z/(1 + z2) considered in Examples 3.2 and 4.2.

Here are examples of domains that are not simply connected:

• C∖ 0: one “hole”;

• C∖ [−i, i] (cf. Examples 3.2 and 4.2): one “hole”;

• an annulus r < |z| < R: one “hole” (assuming r ⩾ 0);

• C∖ {±i}: two “holes”, cf. Example 4.2;

• C∖ Z: infinitely many “holes”.

In a simply connected domain U , one can drop the word “local” in all state-
ments in §3.1: holomorphic functions have anti-derivatives, their integrals are path
independent, for each u there is a v, etc. In general, the global path independence
of integral of f is equivalent to the existence of an anti-derivative F :∫ b

a

f(z)dz = F (b)− F (a), F (z) =

∫ z

a

f(w)dw,
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where
∫ b

a
stands for the integral along any curve C ⊂ U from a to b. However,

in order to establish this property, for each “hole” in U one needs to compute the
integral

∫
C
f(z)dz along (any) one simple closed curve C ⊂ U surrounding this

(and only this) hole and make sure that all these integrals vanish. This is usually
done by means of residues, see §7.

Example 4.2. The domain U := C ∖ [−i, i], see Example 3.2, has a single hole,
viz., the segment [−i, i]. Any simple closed curve C ⊂ U surrounding this hole
contains both poles ±i inside, so that

∫
C
f dz = 2πi(resi f + res−i f). We have∫

C

dz

1 + z2
= 0,

∫
C

z dz

1 + z2
̸= 0

(cf. also Example 7.7); hence, the former function has an anti-derivative, and the
latter does not. On the larger domain V := C∖ {±i}, we would have to compute
two integrals, one for each of the two holes. They do not vanish (as neither do the
residues) and, hence, neither function has an anti-derivative on V .

5 Power and Laurent series
This is one of the principal tools in the study of holomorphic functions.

5.1 Basic properties
A power/Laurent series centered at a point c ∈ C is a series of the form

∞∑
n=0

an(z − c)n or
∞∑

n=−∞

an(z − c)n, (5.1)

respectively, where the constants an ∈ C are the coefficients. Each series (5.1) has
a radius 0 ⩽ R ⩽ ∞ (respectively, radii 0 ⩽ r ⩽ R ⩽ ∞) of convergence, so that
the series converges absolutely and uniformly on compacta on the disk/annulus

U :=
{
|z − c| < R

}
or U :=

{
r < |z − c| < R

}
,

respectively and diverges outside the closure of U . (The behaviour of the series
at various boundary in ∂U may vary from series to series.) Certainly, we are
interested in the cases where R > 0 (respectively, r < R), so that the disk/annulus
of convergence U is nonempty.

Consider a series (5.1) and let U be its region of convergence. Then:
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• the sum f(z) of (5.1) is holomorphic on U ;

• conversely, U is the maximal disk (a maximal annulus) to which f extends
holomorphically (this is how we usually find the radii of convergence);

• a power/Laurent series can be integrated and differentiated termwise; for
the integration, cf. (2.1) and (5.2).

It follows that an entire (holomorphic on the whole plane C) function admits a
Taylor expansion centered at any point, and its radius of convergence is ∞.

The power/Laurent series expansion of a function f that is holomorphic on a
disk/annulus U about c ∈ C is unique; its coefficients can be found via

an =
1

2πi

∫
C

f(z)dz

(z − c)n+1
, (5.2)

where C ⊂ U is a simple closed curve surrounding c. (Usually, one takes for
C the circle |z| = ρ for some 0 < ρ < R or r < ρ < R, respectively.) Note,
though, that these formulas are not very practical; usually, one finds an expansion
by manipulating (integration, differentiation, substitution, multiplication, etc.) a
few known series. (Often, partial fractions help one convert products tu sums,
which are much easier to handle.)

Example 5.3. Note also that the Laurent series depends on the point c and the
chosen annulus of convergence! For example,

1

1− z
=

∞∑
n=0

zn = −
−1∑

n=−∞

zn,

converging in |z| < 1 and |z| > 1, respectively! This is why we speak about a
maximal annulus for Laurent series.

The coefficients of the power (Taylor) series expansion are also found via

an =
1

n!
f (n)(c),

as in Calculus 101. These formulas do not apply to Laurent series, as in this case
f is not even assumed defined at c.

Power/Laurent series can also be multiplied like polynomials:(
∞∑

n=−∞

an(z − c)n

)(
∞∑

n=−∞

bn(z − c)n

)
=

∞∑
n=−∞

( ∑
p+q=n

apbq

)
(z − c)n.
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If both series are power (more generally, both have but finitely many negative
terms), the sums

∑
p+q=n apbq in the right hand side are finite. Otherwise, these

sums are also series, which are guaranteed to converge absolutely provided that
the regions of convergence of the two original series have nonempty intersection.

5.2 Examples
The following Taylor series are assumed known from Calculus 101:

1

1− z
=

∞∑
n=0

zn (R = 1, geometric), (5.4)

(1 + z)a =
∞∑
n=0

(
a

n

)
zn, a ∈ C (R = 1, binomial), (5.5)

1

(1− z)m
=

∞∑
n=0

(
m+ n− 1

n

)
zn, m ∈ Z+ (R = 1, special case), (5.6)

ez =
∞∑
n=0

zn

n!
(R = ∞, exponential), (5.7)

sin z =
∞∑
k=0

(−1)kz2k+1

(2k + 1)!
(R = ∞, special case), (5.8)

cos z =
∞∑
k=0

(−1)kz2k

(2k)!
(R = ∞, special case). (5.9)

As mentioned above, other series are usually obtained from these by substitution
(either simple rescaling z 7→ αz or converting Taylor to Laurent via z 7→ 1/z),
integration/differentiation, linear combinations, or multiplication (if everything
else fails). For example, the second series in Example 5.3 is essentially obtained
from (5.4) by substituting z 7→ 1/z. This would apply to any rational function:
one can expand it to partial fractions (over C, we can stick to fractions with linear
factors of the form 1/(1 − αz)m) and use (5.6), substituting either z 7→ αz or
z 7→ 1/αz, depending on the position of the pole 1/α with respect to the desired
annulus of convergence.

Example 5.10. Occasionally, one can also use (5.2), comparing the integrals to
known ones. Back to Example 5.3, both series have coefficients

an, bn =
1

2πi

∫
C

fn(z)dz, fn(z) :=
1

zn+1(1− z)
.
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The only difference is whether the extra pole z = 1 is inside (for bn, Laurent) or
outside (for an, Taylor) the curve C. Since res1 fn = −1 for each n ∈ Z, we
immediately conclude that bn = an − 1, which agrees to the previous result. See
§7 and Theorem 7.5 for the details of this computation.

6 Properties of holomorphic functions
In this section, I summarize a few miscellaneous (although important) properties
of holomorphic functions which have no analogues in real analysis.

Throughout this section, U ⊂ C is a domain, i.e., a connected open set.

6.1 Cauchy integral
Let f : U → C be a holomorphic function, z ∈ U , and C ⊂ U a simple closed
curve surrounding z ∈ U and bounding a region V contained in U . Then

f(z) =
1

2πi

∫
C

f(w)dw

w − z
, f (n)(z) =

n!

2πi

∫
C

f(w)dw

(w − z)n+1
for n ⩾ 1.

These formulas have numerous remarkable consequences, as in general integrals
behave much better than derivatives (e.g., they commute with uniform limits).

Theorem 6.1. If all functions fn : U → C are holomorphic and fn → f uniformly
on compacta, then f is also holomorphic and f

(m)
n → f (m) for each m ⩾ 1.

6.2 Zeroes of holomorphic functions
In some respects, holomorphic functions are similar to polynomials; for example,
if f(a) = 0, then f is “divisible” by z−a. More precisely, assume that f : U → C
is a holomorphic function, no identically 0, and f(a) = 0 for some a ∈ U . Then
there is an integer m ⩾ 0 and a holomorphic function g : U → C such that

f(z) = (z − a)mg(z) and g(a) ̸= 0.

This integer m is called the multiplicity, or order, of a as a zero of f ; it is the order
of the first non-vanishing derivative of f :

f(a) = f ′(a) = . . . = f (m−1)(a) = 0, f (m)(a) ̸= 0.

Alternatively, m is also the index of the first non-vanishing term of the Taylor
expansion of f about a.

In particular, it follows that zeroes of holomorphic functions are isolated.
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6.3 Liouville’s theorems
Here are the numerous versions of Liouville’s theorem, although I am not sure
that they all bear this name. Let f : C→ C be an entire function. Then:

1. if f → 0 as z → ∞, then f is identical 0;

2. if |f | is bounded, then f = const;

3. if f → ∞ as z → ∞, then f is a polynomial;

4. if |f(z)| < C|z|n for some constants C and n and all |z| ≫ 0, then f is a
polynomial of degree at most n.

Furthermore,

5. if f is a meromorphic (i.e., holomorphic except for finitely many singulari-
ties, which are all poles) on the extended plane C ∪∞, then f is rational.

6.4 Uniqueness of analytic continuation
Roughly, holomorphic functions are very “rigid”: if two such functions coincide
on a sufficiently large set (in fact, a set with at least one limit point), they coincide
everywhere. In particular, if a function admits (which we do not state) an analytic
continuation to a larger domain, this continuation is unique.

Theorem 6.2. Let U be a domain, f, g : U → C two holomorphic functions, and
an ∈ U a sequence with pairwise distinct terms converging to a point a ∈ U . If
f(an) = g(an) for all n, then f ≡ g on U .

One of the applications of this theorem is the fact that any known “reasonable”
identity (e.g., ex+y = exey) that holds for all real arguments of some known real
functions holds also for all complex values of the arguments.

6.5 The maximal modulus principle
If f : U → C is a non-constant holomorphic function, then the function |f(z)| has
no local maxima. Often, this is restated as follows: if K ⊂ U is compact, then the
restriction of |f(z)| to K takes its maximal value (which we know it does) on the
boundary ∂K.

Applying this result to 1/f , one obtains the minimum modulus principle: If
f : U → C is a non-constant holomorphic function, then the function |f(z)| has
no local minima other than the zeroes of f .
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Here is a typical and quite shocking application, used in the proof of the next
theorem. Let K ⊂ U be a compact, and assume that there is an inner point a ∈ K
such that |f(a)| < minz∈∂K |f(z)|. Then f has a zero in K.

Theorem 6.3 (The open mapping theorem). A non-constant holomorphic function
f : U → C is open, i.e., f(V ) is open in C for any open set V ⊂ U .

Warning 6.4. This statement is not to be mixed with the assertions

f−1(open) is open and f−1(closed) is closed

equivalent to the continuity of f . Note also that we do not assert that f(K) is
closed if K ⊂ U is closed (nor is it true in general). However, if K is closed in C
and bounded, then it is compact and f(K) is also compact, hence closed. But this
is a completely different story!

6.6 Schwartz’ lemma
This is another specific application of the maximum modulus principle. We denote
by D := {|z| < 1} the open unit disk.

Theorem 6.5 (Schwarz’ lemma). Let f : D→ D be a holomorphic function (i.e.,
|f(z)| < 1 for all z ∈ D), and assume that f(0) = 0. Then:

|f ′(0)| ⩽ 1, |f(z)| ⩽ |z| for all z ∈ D.

Furthermore, if at least one inequality turns into equality (for at least one z ∈ D),
then f(z) = az for some constant a ∈ C, |a| = 1.

This is often used in conjunction with the fractional linear transformations

gα(z) =
z − α

1− ᾱz
, α ∈ D, (6.6)

which map D onto D biholomorphically (see §10.3).

7 Residues and integrals

7.1 Isolated singular points
A point c ∈ C is called an isolated singular point of a function f if f is defined
and holomorphic in some punctured neighborhood Bε(c)∖ c, ε > 0, of c. Due to
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§5.1, the function f admits a Laurent expansion at c converging (at least) in the
punctured disk 0 < |z − c| < ε; it is this expansion

f(z) =
∞∑

n=−∞

an(z − c)n (7.1)

that we refer to when speaking about the Laurent expansion at an isolated singular
point c (cf. Example 5.3).

The taxonomy of isolated singular points is as follows:

• removable singularity: f is bounded in a neighborhood of c⇐⇒ an = 0 for
n < 0 in (7.1) ⇐⇒ f extends holomorphically through c;

• pole of order m ⩾ 1: f → ∞ as z → c ⇐⇒ a−m ̸= 0 and an = 0 for
n < −m in (7.1) ⇐⇒ f(z) = (z − c)−mg(z) for some g holomorphic in
a neighborhood of c and such that g(c) ̸= 0 (comparing to §6.2, poles are
often regarded as zeroes of negative order; cf. also §7.4);

• essential singularity: for each v ∈ C ∪∞, there is a sequence zn → c such
that f(zn) → v ⇐⇒ in (7.1), there are infinitely many coefficients an ̸= 0
with n < 0. A typical example is c = 0 for e1/z.

A function holomorphic on a domain U except a number of isolated singular
points which are all removable or poles is called meromorphic.

Remark 7.2. Not all singular points are isolated. For example, 0 for 1/ sin(1/z):
singular points accumulate at 0. Even worse, 0 for ln z or

√
z: the function cannot

even be defined in a whole punctured neighborhood of 0.

The residue of f at an isolated singular point c is defined as

resc f := a−1 in (7.1).

At a removable singularity, the residue is 0. At a pole c or order m,

resc f =
1

(m− 1)!
lim
z→c

dm−1

dzm−1

[
(z − a)mf(z)

]
.

Often, (z − c)m “cancels” with the “denominator” of f and limit reduces to mere
substitution. (Accidentally, the order of a pole c is the order of vanishing at c of
the denominator of f , whenever this makes sense.) Still, in most cases, you would

14



not want to use this formula for m > 1, trying other tricks instead. (Many of such
tricks are explored in the homework.) If m = 1, the formula simplifies to

resc f = lim
z→c

(z − c)f(z).

There is no easy way to compute the residue at an essential singular point.

Warning 7.3. Although we speak about the residue of a function f(z), it should
be understood as the residue of the holomorphic differential:

resc f = resc f(z)dz.

This understanding is crucial if you make a change of variables more advanced
then a mere shift z 7→ z − a: the substitution is to be performed both in f and dz.
In particular, this observation explains the slight deviation in the definition of the
residue at infinity, see §7.2.

Remark 7.4. Sometimes, the easiest way to compute the residue is finding a few
first terms of the Laurent expansion, manipulating (addition, subtraction, multi-
plication, and even division) with the Taylor series known from calculus.

7.2 Singular point at infinity
We say that ∞ is an isolated singular point of f if f is holomorphic in a neighbor-
hood of ∞, i.e., outer part |z| > r of a sufficiently large disk. A Laurent expansion
of f at ∞ is any expansion (7.1) converging on an unbounded annulus |z−c| > r.
(Usually, one takes c = 0, but this is not compulsory.) The taxonomy is the same
as in §7.1, except that, in terms of the Laurent expansion, one speaks about pos-
itive rather than negative terms. (E.g., at a pole of order m, one has am ̸= 0 and
an = 0 for n > m.) In other words, one considers g(w) := f(1/w) about its
singular point 0. However, the residue at infinity is defined differently:

res∞ f := −a−1 in (7.1),

cf. Warning 7.3. Note also that res∞ f does not need to vanish if ∞ is a removable
singularity (i.e., f(z) is bounded for |z| ≫ 0). One can develop formulas similar
(but not quite the same) to those in §7.1, but in most cases the following simple
observations suffice:

• if f(z) = O(z−2) as z → ∞, then res∞ f = 0;
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• if f(z) = O(z−1) as z → ∞, then res∞ f = − limz→∞ zf(z).

Accidentally, I do not recommend trying to memorize all these formulas. Just
imagine that most negative (respectively, positive) terms in (7.1) vanish and see
what you can do (multiplying by powers of (z − c), differentiating, etc.) to reach
the coefficient a−1.

7.3 The residue theorem
In this and next sections, we assume that R ⊂ C is a region (not necessarily con-
nected or simply connected) with piecewise smooth boundary ∂R. The boundary
is always assumed oriented so that R is “to the left”; roughly, the “outer” parts of
the boundary are oriented counterclockwise, whereas its “inner” parts are oriented
clockwise. The principal application of residues is the following theorem.

Theorem 7.5. Assume that f is holomorphic in a neighborhood of a region R
except for finitely many (necessarily isolated) singular points, none of which is in
∂R. Then ∫

∂R

f(z)dz = 2πi
∑
c∈R

resc f.

Note that the summation in the right hand side is, in fact, finite, extending to
the singular points of f only, as residues vanish at nonsingular points of f .

Theorem 7.5 still works of the region R is unbounded, provided that it contains
a neighborhood of ∞. Certainly, in this case the residue res∞ f should also be
counted in the right hand side. In the extreme case R = C∪∞ (and ∂R = ∅) we
obtain the following useful statement.

Theorem 7.6. Assume that f is holomorphic on the whole extended plane C∪∞
except for finitely many (necessarily isolated) singular points. Then∑

c∈C∪∞

resc f = 0.

Often, all but one residues of f are easily computed as explained in §7.1 (say,
simple poles) or §7.2. Then, the remaining “bad” residue (e.g., a multiple pole or
essential singularity) can be found by Theorem 7.6.
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Example 7.7. Both functions f in Example 4.2 have exactly two singular points,
viz. ±i. Hence,∫

C

f(z)dz = 2πi
(
resi f + res−i f

)
= −2πi res∞ f.

For the former function, f(z) = O(z−2) as z → ∞; hence, res∞ f = 0, see §7.2.
For the latter, f(z) = O(z−1) and res∞ f = − limz→∞ zf(z) = −1.

7.4 Logarithmic residues and the argument principle
If c is a zero or pole of f , so that f(z) = (z − c)mg(z) with g(c) ̸= 0, then the
logarithmic residue

resc
f ′

f
= m =: ordc f

is the order of f at c. The next theorem is a consequence of Theorem 7.5.

Theorem 7.8 (the argument principle). Assume that f is meromorphic in a neigh-
borhood of region R as in §7.3 and has neither zeroes nor poles on ∂R. Then∑

c∈R

ordc f =
1

2πi

∫
∂R

f ′(z)dz

f(z)
.

Here, the left hand side is the number of zeroes and poles of f in R, counted
with multiplicities. The right hand side can vaguely be interpreted as

1

2πi

∫
∂R

d(ln f) =
ln f(end)− ln f(start)

2πi
=

arg f(end)− arg f(start)
2π

.

In other words, it is the number of full turns that the vector f(z) ∈ C ∖ 0 makes
when z runs once along the boundary ∂R. This explains the name. Besides, since
the increment of arg f(z) is an integer multiple of 2π, it can often be computed
approximately, with |error| < π, using geometric arguments.

Below are a few applications of Theorem 7.8.

Theorem 7.9. Assume that all functions fn : U → C are holomorphic and that
fn → f ̸≡ 0 uniformly on compacta. Then any zero of f is a limit of zeroes of fn.
More precisely, if f(c) = 0, c ∈ U , then there is a sequence cn → c, n ≫ 0, such
that fn(cn) = 0.
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Theorem 7.10 (Rouché). Let f be as in Theorem 7.8, let g be meromorphic in a
neighborhood of R, and assume that |g(z)| < |f(z)| for all z ∈ ∂R. Then the
number of zeroes and poles in R of f + g equals that of f .

Note that, in Theorem 7.10, we compare f and g only on the boundary ∂R.
For example, taking for f the leading term anz

n of a degree n polynomial p(z),
for g, the sum of the other terms, and for R, a sufficiently large disk, we establish
once again the fundamental theorem of algebra: p has exactly n roots (same as
anz

n), counted with multiplicities.

8 Application to real integrals
Since this section mainly deals with examples, for simplicity we assume that P
is a real rational function of its arguments. Other assumptions are listed on the
case-by-case basis, with no attempt to handle the “most general” situation.

8.1 Trigonometric functions over a period
This is a most straightforward application. Consider an integral of the form

I :=

∫ 2π

0

P (sinx, cosx)dx.

(We can take any other limits a, b with b− a = 2π.) Letting z = eix, we have

sinx =
z2 − 1

2iz
, cosx =

z2 + 1

2z
, dx =

dz

iz
,

so that

I =

∮
|z|=1

P

(
z2 − 1

2iz
,
z2 + 1

2z

)
dz

iz
.

This contour integral is usually easily computed by means of Theorem 7.5.

8.2 Rational functions
Consider an integral of the form

I :=

∫ ∞

−∞
P (x)dx,
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and assume that P (z) = O(z−2) as z → ∞ and P has no real poles (so that the
integral converges absolutely by the comparison tests from Calculus 101). We use
Theorem 7.5 to compute the contour integral∫ r

−r

P (z)dz +

∫
Cr

f(z)dz,

where
Cr : z = Reit, t ∈ [0, π], r = const ≫ 0, (8.1)

is a large semicircle. By the ML-bound,
∫
Cr

→ 0 as r → ∞; hence, passing to
the limit, we obtain

I = 2πi
∑

Im a>0

resa P. (8.2)

Remark 8.3. Like most other formulas, this one is not worth memorizing, even
though it looks like Theorem 7.5 applied to the region R := {Im z > 0} whose
boundary is R. You should understand the approach! Besides, in some cases, one
can use various symmetries of P and integrate over smaller regions in order to
reduce the computation of residues. For example, if P (z) has the form Q(zn), it
may make sense to take for R the region bounded by the rays 0 ⩽ arg z ⩽ e2πi/n

and appropriate arc of Cr.

8.3 Some transcendental functions
Here, we consider integrals that can be reduced (via Re or Im) to

I :=

∫ ∞

−∞
eλixP (x)dx, λ ∈ R, λ > 0,

where P (z) = O(z−1) as z → ∞. Examples are sinx = Im eix or cosx = Re eix;
more complicated trigonometric expressions can be reduced to one or several of
the above by means of trigonometric identities (most notable, power reduction). I
strongly recommend mastering the examples:∫ ∞

−∞

sinx dx

x(1 + x2)
,

∫ ∞

−∞

sin2 x dx

x2
,

∫ ∞

−∞

sin3 x dx

x3
,

∫ ∞

−∞

x− sinx

x3
dx.

(For the last one, “at ∞” we combine this section and §8.4.)
We always assume that the original real integrant has no real poles; together

with the bound P (x) = O(x−1) this guarantees the absolute convergence of the
integral. If also P has no real poles, we proceed as in §8.2, arriving at an analogue
of (8.2). Instead of the ML-bound, the following lemma is used.
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Lemma 8.4 (Jordan). If P (z) = O(z−1) as z → ∞ and λ > 0, then (see (8.1))

lim
r→∞

∫
Cr

eλizP (z)dz = 0.

If P does have real poles (as in all four examples above), we cannot integrate
eλixP (x) along [−r, r], as the integral would diverge. In this case, we circumvent
each real pole a of P by a “small” negatively oriented semicircle

Sε(a) : z = a+ εeit, t ∈ [π, 0], 0 < ε = const ≪ 1, (8.5)

and analyze all limits limε→0

∫
Sε(a)

in the hope that the part Re or Im that we are
interested in does have a finite limit. (Note that the full limit may be infinite!)
This can be done, for example, using the partial (negative powers only) Laurent
expansion at a, using the obvious observation that

lim
ε→0

∫
Sε(a)

(a function analytic at a)dz = 0

and computing the integrals of negative powers of z directly:∫
Sε(a)

dz

(z − a)n
=

{
−πi, if n = 1,

(1− n)−1
[
ε1−n − (−ε)1−n

]
, if n > 1.

(For n > 1, we can use the anti-derivative.)

Example 8.6. The last of the four integrals above can be written as∫ ∞

−∞

x− sinx

x3
dx = Im

∫ ∞

−∞

ix− eix

x3
dx = . . .

= − lim
ε→0

Im

∫
Sε(0)

iz − eiz

z3
dz = − lim

ε→0
Im

∫
Sε(0)

(
− 1

z3
− i2

2z
− . . .

)
dz =

π

2
.

Note that we have changed x to ix in order to be able to apply Im to the whole
integral! (Separately, the two integrals would diverge at 0.) Note also that, since
the integrant has no poles in the upper half plane, the whole contribution to the
integral is from Sα(0). (This is the case in all above integrals except the first one.)
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8.4 Key-hole shaped contours
This is a delicate subject that brings up the concept of multivalued functions and/or
Riemann surfaces. As an example, consider an integral of the form

I :=

∫ ∞

0

xαP (x)dx, α ∈ R, −1 < α < 0,

where P (z) = O(z−1) as z → ∞ and P has no poles in [0,∞). We want to
integrate the function f(z) := zαP (z), which is not quite well defined (and it is
this fact that makes the integral computable!) Thus, we cut off the positive real
axis, considering C∖ [0,∞), or else restricting the argument via 0 < arg z < 2π.
However, since we do want f at real points, we extend slightly each edge of the cut
making them overlap but pretending that the overlapping parts do not intersect!
In other words, we restrict −δ < arg z < 2π + δ (and still z ̸= 0), obtaining
two distinct copies of the real semiaxis (0,∞), one with arg z = 0, and one with
arg z = 2π, in which we allow f to take distinct values! (The result is a simplest
example of the so-called Riemann surface, i.e., something that locally looks like
an open set in C but globally is not part of C. Another, better known example is
the Riemann sphere C ∪∞.)

In this new surface, we can integrate f along the “key-hole shaped” contour C
consisting of a large circle

CR : z = reit, t ∈ [0, 2π], r = const ≫ 0,

real line segment [r, ε], small circle

Sε : z = εeit, t ∈ [2π, 0], 0 < ε = const ≪ 1,

and another segment [ε, r]. Note that the circles are no longer “closed” and the
two segments are distinct, so that the integrals do not cancel. In fact, because of
the argument difference (and the orientation), we have∫

[ε,r]

=

∫ r

ε

xαP (x)dx,

∫
[r,ε]

= −e2πiα
∫ r

ε

xαP (x)dx

On the other hand, in our Riemann surface, C bounds the open annular sector

R :=
{
ε < |z| < r, 0 < arg z < 2π

}
,

to which we can apply Theorem 7.5. (A formal justification would consist in
stepping a bit away from the border, applying the theorem, and taking limit.)
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Since also
∫
Sε

→ 0 as ε → 0 and
∫
Cr

→ 0 as r → ∞, both by the ML-bound, we
arrive at

I = − πeπiα

sinπα

∑
c∈C∖0

resc f,

where the residues are computed under the assumption 0 < arg z < 2π. (Recall
that P and, hence, f have no poles in [0,∞). The coefficient in front of the sum
is the “classical” way to write the quotient 2πi/(1− e2πiα).)

Remark 8.7. Instead of working with the overlapping contour, we could have
stepped away from the boundary (say, considering the shifted segments [ε, r]±δi)
and passed to yet another limit δ → 0 at the end. However, this approach would
be much more technical and somewhat less clean.

Remark 8.8. A similar approach applies to “indefinite” integrals, i.e., those of the
form

∫∞
a

P (x)dx: we integrate the function f(z) := ln(z − a)P (z). Try to work
out the details.

Remark 8.9. For functions involving(
x− a

b− x

)α

or ln
x− a

b− x
,

one can try a similar contour consisting of [a + ϵ, b − ϵ], [b − ϵ, a + ϵ], and two
small circles of radius ϵ about a and b.

8.5 Other contours
There is a huge number of other tricks, all consisting in applying Theorem 7.5 to
an appropriate contour C and passing to appropriate limits, so that integrals over
some parts of C tend to zero, whereas others tend to the integral in question.

Example 8.10. The integral∫ ∞

−∞

eαxdx

ex + 1
, 0 < α < 1,

can be computed via the integration over the (sides of the) rectangle with the
vertices ±r, ±r + 2πi and letting r → ∞. Fill in the details.
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8.6 Summation of series
The following trick can be used to sum up some numeric series. We observe that
the function π cotπz has simple poles at all integers, with all residues equal to 1.

Lemma 8.11. If P (z) = O(z−2) as z → ∞, then∫
□N

P (z) cotπz dz −→
N→∞

0,

where □N is the square with the vertices (N + 1
2
)(±1± i), N ∈ N.

Let S be the set of all poles of P . Then, applying Theorem 7.5 to □N and
letting N → ∞, we obtain the formula∑

n∈Z∖S

P (n) = −π
∑
c∈S

resc
(
P (z) cotπz

)
. (8.12)

Example 8.13. The most “classical” application of (8.12) is the computation of
the ζ-values: letting P (z) := z−2k, k ∈ Z, k ⩾ 0, and using the symmetry, we
obtain

ζ(2k) :=
∞∑
n=1

1

n2k
= −1

2
a2k−1π

2k,

where
∑∞

n=−1 anz
n is the Laurent series of cot z at 0. Given time, any number

of coefficients can be computed, e.g., dividing the series for cos z and sin z. In a
sense, these coefficients are “known”:

a2k−1 = (−1)k
22kB2k

(2k)!
,

where Bn are the so-called Bernoulli numbers. (All coefficients except a−1 are
negative.) Note that the odd ζ-values ζ(2k + 1) are not known!

9 The Γ-function
The Γ-function is defined via

Γ(z) :=

∫ ∞

0

xz−1e−xdx.
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This integral converges (and thus defines Γ) for Re z > 0. It can be shown that Γ
is holomorphic, with the expected

Γ′(z) :=

∫ ∞

0

xz−1 lnx e−xdx.

(Since the integral is improper, this needs some work, but not too much.)
Integrating by parts, we obtain the functional equation

zΓ(z) = Γ(z + 1). (9.1)

Since obviously Γ(1) = 1, this equation implies that Γ(n) = (n−1)! for each pos-
itive integer n, i.e., Γ is a “natural” extension of the factorial function to complex
arguments. Another known value of Γ is Γ(1/2) =

√
π.

Using (9.1), one can also extend Γ to Re z ⩽ 0, by letting

Γ(z) :=
Γ(z + n)

z(z + 1) . . . (z + n− 1)
,

where n ⩾ 0 is an integer such that Re(z + n) > 0. (In view of (9.1), this value
does not depend on the choice of such n.) The result is a meromorphic function
that has a simple pole at each integer n ⩽ 0.

The B-function (this is “Beta”, not B) is defined via

B(p, q) :=

∫ 1

0

xp−1(1− x)q−1dx;

this integral converges for Re p > 0 and Re q > 0. The most famous property of
this function is its relation to Γ:

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
.

The Γ-function, either per se or via B, can be used to compute a great deal
of definite integrals, usually by an appropriate change of variables, which may be
followed by a contour argument similar to §8.

Example 9.2. Substituting sin2 t = x, one has∫ π/2

0

sin2p−1 t cos2q−1 t dt = B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
.
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10 Automorphisms of simply connected domains
According to Riemann’s mapping theorem, there are essentially three distinct sim-
ply connected domains: the Riemann sphere P1 := C ∪∞, the plane C, and the
unit disk D := {|z| < 1}, which is conformally equivalent to any other simply
connected proper open subset U ⊊ C.

We are interested in the conformal transformations (or biholomorphisms) of
these domains U , i.e., bijective holomorphic maps f : U → U . (The injectivity
implies that f ′(z) ̸= 0 for all z ∈ U and, hence, f−1 is also holomorphic.) Such
transformations preserve angles between curves but, in general, distort length.

10.1 The Riemann sphere
It is convenient to follow the tradition and denote P1 := C ∪∞, so that ∞ is no
longer distinguished. Any conformal transformation of P1 is fractional linear:

fA : z 7→ az + b

cz + d
, A :=

[
a b
c d

]
∈ Mat2(C). (10.1)

(It is convenient to parametrize these maps by (2 × 2)-matrices rather than by
quadruples of complex numbers.) Clearly, fA ̸= const if and only if detA ̸= 0
and proportional matrices A and αA, α ∈ C∖ 0, define the same map fA = fαA.
Furthermore, the composition of two fractional linear transformations is also of
the same form:

fA ◦ fB = fAB.

It follows that the group of conformal automorphisms P1 → P1 is the so-called
general projective group PGL(2,C), i.e., the group of nonsingular (detA ̸= 0)
complex (2× 2)-matrices A modulo the scalar matrices αI , α ∈ C∖ 0.

The action of PGL(2,C) on P1 is 3-transitive, i.e., any triple of pairwise dis-
tinct points can be taken to any other such triple. In fact, the map

z 7→ (z3 − z1)(z − z2)

(z3 − z2)(z − z1)
(10.2)

takes (z1, z2, z3) to (∞, 0, 1), and this is the only map (10.1) with this property. A
fourth point z4 is taken by (10.2) to

λ = (z1, z2; z3, z4) :=
(z3 − z1)(z4 − z2)

(z3 − z2)(z4 − z1)
;
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this expression is called the cross-ratio of the quadruple z1, z2, z3, z4. The cross-
ratio is preserved by fractional linear transformations, and it is the only invariant
that distinguishes ordered quadruples. See cross-ratio in Wikipedia.

Fractional linear transformations take lines or circles to lines or circles. (Note
that a line can be taken to a circle and vice versa; in fact, it is convenient to treat
lines as “circles” through ∞.) Any triple z1, z2, z3 of pairwise distinct points lies
in a unique line or circle L, which divides P1 into two connected regions. A fourth
point z4 lies in L if and only if λ := (z1, z2; z3, z4) ∈ R, i.e., Imλ = 0; otherwise,
the two components of P1 ∖ L are distinguished by the sign of Imλ.

10.2 The complex plane
This domain is boring. Any conformal transformation of C is affine linear:

z 7→ az + b, a, b ∈ C, a ̸= 0.

Thus, a posteriori, conformal transformations of C are those of P1 that fix the
distinguished point ∞. The action is 2-transitive; lines are taken to lines, and
circles are taken to circles. Geometrically, any transformation is a composition of
translation, rotation, and dilation.

10.3 The unit disk
Any conformal transformation D→ D has the form

z 7→ β
z − α

1− ᾱz
, α ∈ D, β ∈ ∂D, (10.3)

i.e., it is the composition of a certain gα as in (6.6) and rotation z 7→ βz; these ro-
tations are all maps (10.3) preserving the origin. Again, a posteriori we conclude
that any transformation extends to P1 and is characterized by the property that it
preserves the boundary circle ∂D (as a set) and takes its interior to itself.

The action is 11
2
-transitive: any flag (point, direction) can be taken to any other

flag. Lines or circles are taken to lines or circles, preserving the angle with the
boundary circle ∂D.

Often, it is more convenient to consider an alternative model, viz. the upper
half-plane H := {Im z > 0}, which is taken to D, e.g., by the Cayley transform

z 7→ z − i

z + i
. (10.4)
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The conformal transformations H→ H are those maps fA in (10.1) that preserve
the boundary ∂H = R and the sign of Im z. It is easy to see that, after rescaling,
one must have a, b, c, d ∈ R and detA > 0. Rescaling further to detA = 1,
we arrive at the so-called special projective group PSL(2,R), i.e., the group of
unimodular (detA = 1) real (2× 2)-matrices A modulo ±I .

10.4 Hyperbolic geometry
Redefine the length of a curve C ⊂ H and distance between z, w ∈ H via

ℓ(C) :=

∫
C

ds

Im z
, dist(z, w) := inf ℓ(C),

where the infimum is taken over all curves C ⊂ H connecting z and w. The result
is called the Poincaré metric, and the pair (H, dist) is referred to as the Poincaré
half-plane model of hyperbolic geometry. (Using Cayley transform (10.4), we can
transfer this metric to the unit disc D, obtaining the Poincaré disk model.)

With respect to this metric, lines (aka geodesics, i.e., shortest curves) in H
are the usual Euclidean lines and half-circles orthogonal to the absolute R = ∂H.
These lines satisfy all Euclidean axioms (e.g., two lines intersect in at most one
point, through two distinct points there is a unique line, etc.) except the famous
parallel postulate: now, for any line L and any point z /∈ L, there are at least two
lines through z disjoint from L.

It turns out that the group PSL(2,R) of conformal transformations of H, see
§10.3, is precisely the group of orientation preserving isometries (rigid motions)
of the hyperbolic plane (H, dist). The isometries id ̸= fA, A ∈ PSL(2,R) can be
classified according to the trace traceA := a + d, or, equivalently, according to
the number and position of their fixed points:

• if |traceA| < 2, then fA has a unique fixed point a ∈ H (and the conjugate
point ā ∈ H̄); this is an analogue of Euclidean rotation about a;

• if |traceA| > 2, then fA has two distinct ideal fixed points a, b ∈ ∂H; this
is an analogue of Euclidean translation along the line through a and b;

• if |traceA| = 2, then fA has a single 2-fold ideal fixed point a ∈ ∂H; this
horolation (“rotation” about a) has no analogues in the Euclidean plane.

Technically, in the last two cases fA has no fixed points at all, as the absolute ∂H
is not part of the hyperbolic plane: the ideal points a ∈ ∂H correspond to pencils
of parallel lines in H. (Note, though, that the concept of parallel in hyperbolic
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geometry differs from that in Euclidean.) However, these ideal points are very
useful in the description of many geometric phenomena.

For details and references, see, e.g., Poincaré half-plane model in Wikipedia.

28

https://en.wikipedia.org/wiki/Poincare_half-plane_model

	Glossary
	Complex integration
	Holomorphic functions
	Many definitions of holomorphic functions
	Notes on path independence
	Examples

	Simple connectedness
	Power and Laurent series
	Basic properties
	Examples

	Properties of holomorphic functions
	Cauchy integral
	Zeroes of holomorphic functions
	Liouville's theorems
	Uniqueness of analytic continuation
	The maximal modulus principle
	Schwartz' lemma

	Residues and integrals
	Isolated singular points
	Singular point at infinity
	The residue theorem
	Logarithmic residues and the argument principle

	Application to real integrals
	Trigonometric functions over a period
	Rational functions
	Some transcendental functions
	Key-hole shaped contours
	Other contours
	Summation of series

	The Gamma-function
	Automorphisms of simply connected domains
	The Riemann sphere
	The complex plane
	The unit disk
	Hyperbolic geometry


