Problem 1. Evaluate $\int \frac{dx}{\cos x(1+\sin x)}$.

SOLUTION: One has (substituting $t = \sin x$):

$$\int \frac{\cos x \, dx}{\cos^2 x (1+\sin x)} = \int \frac{d(\sin x)}{(1-\sin^2)(\sin x+1)} = \int \frac{dt}{(1-t)(1+t)^2}$$
$$= \int \left[\frac{1}{4}\frac{1}{t+1} - \frac{1}{4}\frac{1}{t-1} - \frac{1}{2}\frac{1}{(t+1)^2}\right] dt = \frac{1}{2}\frac{1}{t+1} + \frac{1}{4}\ln\left|\frac{1+t}{1-t}\right| + C$$
$$= \frac{1}{2}\frac{1}{\sin x+1} + \frac{1}{4}\ln\left|\frac{(1+\sin x)^2}{1-\sin^2 x}\right| + C = \left[\frac{1}{2}\frac{1}{\sin x+1} + \frac{1}{2}\ln\left|\frac{1+\sin x}{\cos x}\right| + C\right].$$

(The decomposition into partial fractions is straightforward and therefore is omitted. To get simple equations for the coefficients, one can let $t = \pm 1$ or 0.)

Problem 2. Evaluate (or show that the integral diverges):

(a)
$$\int \frac{dx}{x + \sqrt{x^2 + 1}}$$
.
(b) $\int_0^\infty \frac{(x^2 + x + 1)^2}{(x + 1)(x^2 + 1)^2} dx$.

SOLUTION: (a) Let $x = \sinh t$, so that $t = \ln(x + \sqrt{x^2 + 1})$. Then the integral is

$$\int \frac{\cosh t \, dt}{\sinh t + \cosh t} = \int \frac{e^t + e^{-t}}{2e^t} \, dt = \frac{1}{2} \int (1 + e^{-2t}) dt = \frac{t}{2} - \frac{1}{4} e^{-2t} + C$$
$$= \frac{1}{2} \ln(x + \sqrt{x^2 + 1}) - \frac{1}{4(x + \sqrt{x^2 + 1})^2} + C = \boxed{\frac{1}{2} \ln(x + \sqrt{x^2 + 1}) - \frac{1}{2}x^2 + \frac{1}{2}x\sqrt{x^2 + 1} + C_1}.$$

(Note that $1/(x + \sqrt{x^2 + 1}) = \sqrt{x^2 + 1} - x$, as $(\sqrt{x^2 + 1} - x)(\sqrt{x^2 + 1} + x) = x^2 + 1 - x^2 = 1$.) Alternatively, one can let $x = \tan t$, $-\pi/2 < t < \pi/2$, so that $\sin t = x/\sqrt{x^2 + 1}$ and $\cos t = 1/\sqrt{x^2 + 1}$. Then

the integral is

$$\int \frac{\sec^2 t \, dt}{\tan t + \sec t} = \int \frac{dt}{\cos t (\sin t + 1)} = [\text{see Problem 4!}] = \frac{1}{2} \frac{1}{\sin t + 1} + \frac{1}{2} \ln \left| \frac{1 + \sin t}{\cos t} \right| + C$$
$$= \frac{1}{2} \frac{\sqrt{x^2 + 1}}{x + \sqrt{x^2 + 1}} + \frac{1}{2} \ln(x + \sqrt{x^2 + 1}) + C = \boxed{-\frac{1}{2}x^2 + \frac{1}{2}x\sqrt{x^2 + 1} + \frac{1}{2}\ln(x + \sqrt{x^2 + 1}) + C_1}$$

(As above, note that $1/(x + \sqrt{x^2 + 1}) = \sqrt{x^2 + 1} - x$.)

(b) Denote the integrant by f(x) and observe that it decreases as 1/x when $x \to \infty$. (Formally speaking, one has $\lim_{x\to\infty} \frac{f(x)}{1/x} = 1$.) Hence, by the **limit comparison test**, the integral in question diverges, as so does $\int_1^\infty dx/x$. (Note that a direct computation of the integral is doable, but tedious.)

Problem 3. Evaluate (or show that the sequence diverges):

(a)
$$\lim_{n \to \infty} n \sin \frac{1}{n} \sin \frac{n\pi}{2}$$
.
(b) $\lim_{n \to \infty} \left(\frac{3n+1}{3n-1}\right)^n$.

SOLUTION: (a) First, note that $\lim_{n \to \infty} n \sin \frac{1}{n} = \lim_{x \to 0} \frac{\sin x}{x} = 1$ (where x = 1/n). Now, if n = 2k is even, then $\sin(n\pi/2) = 0$ and the limit is 0. If $n = 4l \pm 1$ is odd, then $\sin(n\pi/2) = \pm 1$ and the limit is ± 1 . Since three subsequences converge to three distinct limits, the original sequence diverges.

(b) Denote the limit in question by A. Then

$$\ln A = \lim_{n \to \infty} n \ln \frac{3n+1}{3n-1} = \lim_{x \to 0} \frac{\ln \frac{3+x}{3-x}}{x} = \lim_{x \to 0} \frac{3-x}{3+x} \left(\frac{3+x}{3-x}\right)' = \frac{2}{3}.$$

(Here, $x = 1/n \to 0$.) Thus, $A = e^{2/3}$. Alternatively, one has

$$\lim_{n \to \infty} \left(\frac{3n+1}{3n-1}\right)^n = \lim_{n \to \infty} \left[\left(1 + \frac{2}{3n-1}\right)^{(3n-2)/2} \right]^{2n/(3n-2)} = e^{\lim_{n \to \infty} \frac{2n}{3n-2}} = \boxed{e^{2/3}}$$

Problem 4. Determine whether each of the following series is convergent or divergent. State clearly the name and the conditions of the test you are using. Show all your work!

(a1)
$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$$
; (a2) $\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$; (a3) generalize.
(b) $\sum_{n=1}^{\infty} a_n$, where $a_1 = 1$ and $a_{n+1} = \frac{1}{1+a_n}$ for $n \ge 1$.

SOLUTION: (a) Apply the **ratio test** to $\sum_{n=1}^{\infty} \frac{c^n n!}{n^n}$, where c = const:

$$\frac{a_{n+1}}{a_n} = \frac{c^{n+1}(n+1)!n^n}{c^n n!(n+1)^{n+1}} = c\left(\frac{n}{n+1}\right)^n = c\left(1+\frac{1}{n}\right)^{-n} \xrightarrow[n \to \infty]{} \frac{c}{e}.$$

Thus, the series converges for c < e and diverges for c > e. (We leave the border case c = e open.) In particular, (a1) converges and (a2) diverges.

(b) If the series were to converge, one would have $\lim_{n\to\infty} a_n = 0$ (the *n*-th term test). But then, passing to the limit in the recursive relation, one would get the contradiction 0 = 1/(1+0) = 1. Thus, the series diverges.

Problem 5. Determine whether each of the following series is convergent or divergent. State clearly the name and the conditions of the test you are using. Show all your work!

(a)
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n \ln(\ln n)}.$$

(b)
$$\sum_{n=1}^{\infty} \frac{(n!)^n}{n^{(n^2)}}.$$

SOLUTION: (a) We apply the **integral test** to the function $f(x) = 1/(x \ln x \ln(\ln x))$ (note that the integration starts at x = 3 as f(x) has a point of discontinuity at x = e):

$$\int_{3}^{\infty} \frac{dx}{x \ln x \ln(\ln x)} = \int_{3}^{\infty} \frac{d(\ln x)}{\ln x \ln(\ln x)} = \int_{3}^{\infty} \frac{d(\ln(\ln x))}{\ln(\ln x)} = \ln(\ln(\ln x)) \Big|_{3}^{\infty} = \infty.$$

Thus, the series diverges .

(b) The series converges by the **root test**: $\sqrt[n]{a_n} = \frac{n!}{n^n} < \frac{1}{n} \xrightarrow[n \to \infty]{} 0.$