Solutions to Midterm I

Problem 1. Find the limits:
(a) $\lim _{x \rightarrow 0}(\cos x)^{\frac{x}{x-\sin x}}$.
(b) $\lim _{x \rightarrow \infty} \frac{\cosh x+f(x)}{\sinh x-f(x)}$, assuming that $f(x)$ grows slower than e^{x} when $x \rightarrow \infty$.

SOLUTION: (a) Denote the limit in question by A. Then

$$
\ln A=\lim _{x \rightarrow 0} \frac{x \ln \cos x}{x-\sin x}=\left[\frac{0}{0}\right]=\lim _{x \rightarrow 0} \frac{\ln \cos x-x \tan x}{1-\cos x}=\left[\frac{0}{0}\right]=\lim _{x \rightarrow 0} \frac{-\tan x-\tan x-x \sec ^{2} x}{\sin x}=-3
$$

(cancelling $\sin x$ and using $\lim _{x \rightarrow 0}(x / \sin x)=1$). Hence, $A=e^{-3}$.
(b) Spell out and divide by e^{x} :

$$
\lim _{x \rightarrow \infty} \frac{\frac{1+e^{-2 x}}{2}+\frac{f(x)}{e^{x}}}{\frac{1-e^{-2 x}}{2}-\frac{f(x)}{e^{x}}}=1 \quad \quad\left(\text { using } \lim _{x \rightarrow \infty} e^{-2 x}=0 \text { and } \lim _{x \rightarrow \infty} \frac{f(x)}{e^{x}}=0\right. \text {). }
$$

Problem 2. Evaluate $\int \frac{x}{x^{3}+4 x^{2}+8 x+8} d x$.
SOLUTION: Note that $x=-2$ is a root of the denominator; then, dividing by $(x+2)$, we get $x^{3}+4 x^{2}+8 x+8=$ $(x+2)\left(x^{2}+2 x+4\right)$. The partial fraction expansion is

$$
\frac{x}{x^{3}+4 x^{2}+8 x+8}=\frac{A}{x+2}+\frac{B x+C}{x^{2}+2 x+4}, \quad \text { or } \quad x=A\left(x^{2}+2 x+4\right)+(B x+C)(x+2) .
$$

Letting $x=-2$, we get $A=-\frac{1}{2}$. Letting $x=0$, we get $0=4 A+2 C$, or $C=1$. Finally, equating the coefficients of x^{2} (the highest power of x), we get $0=A+B$, or $B=\frac{1}{2}$. In addition, notice that $x^{2}+2 x+4=(x+1)^{2}+3$ (complete the square) and $\frac{1}{2} x+1=\frac{1}{2}(x+1)+\frac{1}{2}$. Hence, the integral in question is ${ }^{1}$

$$
-\frac{1}{2} \int \frac{d x}{x+2}+\frac{1}{2} \int \frac{x+1}{x^{2}+2 x+4} d x+\frac{1}{2} \int \frac{d x}{(x+1)^{2}+3}=-\frac{1}{2} \ln |x+2|+\frac{1}{4} \ln \left(x^{2}+2 x+4\right)+\frac{\sqrt{3}}{6} \tan ^{-1} \frac{x+1}{\sqrt{3}}
$$

Problem 3. Evaluate:
(a) $\int \sinh (\ln (x+1)-\ln (x-1)) d x$.
(b) $\int x \sinh ^{-1}\left(x^{2}\right) d x$.
solution: (a) First, simplify:

$$
\sinh (\ln (x+1)-\ln (x-1))=\sinh \ln \frac{x+1}{x-1}=\frac{1}{2} e^{\ln \frac{x+1}{x-1}}-\frac{1}{2} e^{-\ln \frac{x+1}{x-1}}=\frac{1}{2}\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right)=\frac{1}{x-1}+\frac{1}{x+1}
$$

Then the integral is $\ln |x-1|+\ln |x+1|=\ln \left|x^{2}-1\right|$.
(b) First, substitute $t=x^{2}, d t=2 x d x$. Then the integral in question is
$\frac{1}{2} \int \sinh ^{-1} t d t=\left[\begin{array}{cc}u=\sinh ^{-1} t & d u=\frac{d t}{\sqrt{t^{2}+1}} \\ v=t & d v=d t\end{array}\right]=\frac{1}{2} t \sinh ^{-1} t-\frac{1}{2} \int \frac{t d t}{\sqrt{t^{2}+1}}=\frac{1}{2} x^{2} \sinh ^{-1}\left(x^{2}\right)-\frac{1}{2} \sqrt{x^{4}+1}$.

[^0]Problem 4. (a) Find $g\left(\frac{\pi}{6}\right)$, where $g(x)=\frac{d}{d x} \int_{-\tan x}^{\tan x} \frac{d t}{\left(t^{2}+1\right)^{2}} d t$.
(b) Express $\operatorname{sech}^{-1}\left(\frac{1}{\sqrt{2}}\right)$ in terms of the natural logarithm.

SOLUTION: (a) Use the fundamental theorem of calculus and the chain rule:

$$
g(x)=\frac{1}{\left(\tan ^{2} x+1\right)^{2}}(\tan x)^{\prime}-\frac{1}{\left(\tan ^{2} x+1\right)^{2}}(-\tan x)^{\prime}=2 \cos ^{2} x
$$

Then $g\left(\frac{\pi}{6}\right)=2\left(\frac{\sqrt{3}}{2}\right)^{2}=\frac{3}{2}$.
(b) Let $x=\operatorname{sech}^{-1}\left(\frac{1}{\sqrt{2}}\right)$. Then $\cosh x=\sqrt{2}$, i.e., $e^{x}+e^{-x}=2 \sqrt{2}$. Let $e^{x}=y$, so that $y^{2}-2 \sqrt{2} y+1=0$, or $y=\sqrt{2} \pm 1$. Since we want $x \geq 0$ (the definition of sech $^{-1}$), we need $y \geq 1$, i.e., $y=\sqrt{2}+1$ and $x=\ln (\sqrt{2}+1)$.

Problem 5. (a) Find $\frac{d}{d x}(\sin x)^{\ln x}$.
(b) Evaluate $\int_{0}^{2}\left(\int_{2}^{x} e^{t^{2}} d t\right) d x$.

SOLUTION: (a) Use logarithmic differentiation:

$$
\begin{aligned}
& \left(\ln (\sin x)^{\ln x}\right)^{\prime}=(\ln x \ln (\sin x))^{\prime}=\frac{\ln (\sin x)}{x}+\ln x \cot x, \quad \text { and } \\
& \qquad\left((\sin x)^{\ln x}\right)^{\prime}=(\sin x)^{\ln x\left(\frac{\ln (\sin x)}{x}+\ln x \cot x\right)}
\end{aligned}
$$

(b) Integrate by parts (keeping in mind the fundamental theorem of calculus)

$$
\int_{0}^{2}\left(\int_{2}^{x} e^{t^{2}} d t\right) d x=\left[\begin{array}{cc}
u=\int_{2}^{x} e^{t^{2}} d t & d u=e^{x^{2}} d x \\
v=x & d v=d x
\end{array}\right]=\left[x \int_{2}^{x} e^{t^{2}} d t\right]_{0}^{2}-\int_{0}^{2} x e^{x^{2}} d x=0-\left[\frac{1}{2} e^{x^{2}}\right]_{0}^{2}=\frac{1-e^{4}}{2}
$$

(In the last integral, we use the substitution $x^{2}=t$. The exintegral term is $\left[x \int_{2}^{x}\right]_{0}^{2}=2 \int_{2}^{2}-0 \int_{2}^{0}=0$.)

[^0]: ${ }^{1}$ I am skipping the $+C$ part to save space

