Solutions to Midterm I

Problem 1. Find the limits (without using l'Hôpital's rule):
(a) $\lim _{x \rightarrow 0} \frac{\cos ^{2} 3 x-1}{\tan x \sin 2 x}$.
(b) $\lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x^{3}-2 x^{2}-2 x-3}$.

Problem 2. Find the derivatives of the following functions:
(a) $y=\frac{\left(x^{2}+1\right)^{3}}{(x+1)^{4}}$.
(b) $y=\sin \left(x+\sqrt{x^{2}+1}\right)-\frac{1}{\pi+1}$.
(c) $y=\left(\frac{\sin x}{\cos x-1}\right)^{3}$.

Problem 3. Show that the tangent to the curve $y=x^{3}$ at any point $\left(a, a^{3}\right)$ meets the curve again at a point where the slope of the tangent is four times the slope of the original tangent at $\left(a, a^{3}\right)$.

Problem 4. Find $y^{\prime \prime}$ at the point $(x, y)=(1,-1)$, where y is a differentiable function of x satisfying the equation $x^{2}+x y+y^{2}=1$.

Problem 5. A light shines from the top of a pole 50 ft high. A ball is dropped from the same height from a point 30 ft away from the light. How fast is the shadow of the ball moving along the ground 0.5 sec later? (Assume that the ball falls a distance $s=16 t^{2} \mathrm{ft}$ in $t \mathrm{sec}$.)

