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Preface

The purpose of this monograph is to summarize, unify, and extend a number of inter-
related results that were published or submitted during the last five years in a series of
papers by the author, partially in collaboration with Ilia Itenberg, Viatcheslav Khar-
lamov, and Nermin Salepci. As often happens in a long research project, the principal
ideas have evolved and a few minor mistakes have been discovered, calling for a
new, more comprehensive and unified approach to the earlier papers. Furthermore,
as the work is still in progress, I am representing older results in a more complete
and general form. The monograph also contains several newer results that have never
appeared elsewhere. Thus, we complete the analysis of the metabelian invariants of a
trigonal curve (see chapter 6), compute the fundamental groups of all, not necessarily
maximizing, irreducible simple sextics with a triple point (see chapter 8; a few new
sextics with finite nonabelian fundamental group have been discovered), and establish
the quasi-simplicity of most ribbon curves, including M -curves (see §10.3.2). The lat-
est achievement is the complete understanding of simple monodromy factorizations
of length two in the modular group (see §10.2.2; joint work with N. Salepci). In spite
of its apparent simplicity, our description of such factorizations has interesting appli-
cations to the topology of real trigonal curves and real Lefschetz fibrations; they are
discussed in §10.3. There also are a few other advances in the study of monodromy
factorizations (see, e.g., §10.2.3), but in general the situation still remains unclear and
the problem seems wild.

The dominant theme of the book is the very fruitful close relation between three
classes of objects:

• elliptic surfaces and trigonal curves in ruled surfaces, see chapter 3,
• skeletons (certain bipartite ribbon graphs), see chapter 1, and
• subgroups of the modular group Γ := PSL(2,Z), see chapter 2.

(Slightly different versions of skeletons appeared in the literature under a number of
names, the most well known being dessins d’enfants and quilts.) When restricted to
appropriate subclasses, this relation becomes bijective, providing an intuitive combi-
natorial and topological framework for the study of trigonal curves, on the one hand,
and of subgroups of Γ, on the other.
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Undoubtedly, both dessins d’enfants and the modular group are amongst the most
popular objects of modern mathematics; both are extensively covered in the literature.
Thus, the modular group and its subgroups play a central rôle in the theory of modular
forms, Moonshine theory, some aspects of number theory and hyperbolic geometry.
Dessins d’enfants, apart from Grothendieck’s original idea [83] connecting them (via
Belyı̆ maps) to the absolute Galois group Gal(Q̄/Q), are related (via moduli spaces of
curves and the Gromov–Witten theory) to topological field theories and integrable par-
tial differential equations. Unfortunately, all of these fascinating topics are beyond the
scope of this book. Our primary concern is a straightforward application of dessins to
topology of trigonal curves and plane curves with deep singularities: the monodromy
of such a curve can be computed, in a purely combinatorial way, in terms of its dessin;
as a consequence, the monodromy group is a subgroup of Γ of genus zero and, using
the well developed theory of such subgroups, we obtain numerous restrictions on the
fundamental group of the curve and its more subtle geometric properties. This idea is
summarized in Speculation 5.90 in chapter 5.

Principal results

Originally, my interest in dessins d’enfants was motivated by our work (joint with
I. Itenberg and V. Kharlamov) on real trigonal curves and real elliptic surfaces and by
my attempts to compute the fundamental groups of plane sextics. These two classes
of objects remain the principal geometric applications of the theory. Here is a brief
account of the most important statements found in the text.

Plane sextics We use skeletons to classify irreducible plane sextics with a triple
singular point (including non-simple ones) and compute their fundamental groups, see
Theorems 7.45, 8.1, and 8.2. Thanks to works by J.-G. Yang [166], I. Shimada [148],
and the author [46], the classification of simple plane sextics is close to its completion.
This classification relies on the global Torelli theorem for K3-surfaces and is not quite
constructive; the ‘visualization’ of sextics, necessary for the detailed study of their
geometry, remains an open problem. In the presence of a triple point, this problem is
solved by means of the skeletons.

A brief survey of the known results concerning plane sextics and their fundamental
groups is given in §7.2.1 and §7.2.3.

Another application in this direction is the classification up to deformation and the
computation of the fundamental groups of singular plane quintics, see Theorems 7.49
and 7.50. This result is old, but its complete proof has never been published.

Universal trigonal curves and metabelian invariants The monodromy group of a
non-isotrivial trigonal curve over a rational base is a subgroup of genus zero, and any
subgroup H ⊂ Γ of genus zero is realized by a certain universal curve, from which
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any other curve with the monodromy group subconjugate to H is induced, see §5.3.1
and Corollary 5.88. These facts impose strong restrictions on the fundamental group
and relate the latter to some geometric properties of the curve. (I expect that there
should be a reasonable description of all finite quotients of such groups.) As a first
step, we obtain universal (independent of the singularities) bounds on the Alexander
module of a trigonal curve, see Theorems 6.1 and 6.16. Then, as an illustration of
Speculation 5.90(2), we establish a version of Oka’s conjecture for trigonal curves,
see Theorem 6.10, and classify the so-called Z-splitting sections of such curves, see
Theorem 6.15: any Z-splitting section is induced from a certain universal one. This
statement may have further implications to the study of tetragonal curves, hence plane
sextics with A type singular points only.

Monodromy factorizations A long standing question, related to the study of the
topology of algebraic and pseudo-holomorphic curves, is whether a simple factor-
ization of a given monodromy at infinity is unique up to Hurwitz equivalence. We
answer this question in the negative and show that the problem is much wilder than it
might seem: in the group as simple as B3, the number of nonequivalent factorizations
may grow exponentially in length, see Theorem 10.20. On the other hand, we give a
complete classification of Γ-valued factorizations of length two, see Theorems 10.27,
10.30, and 10.32 (joint with N. Salepci). As a by-product, we show that any maximal
real elliptic Lefschetz fibration is algebraic, see Theorem 10.88. With elliptic surfaces
in mind, we also introduce a new invariant of monodromy factorizations, the so-called
transcendental lattice, and study its properties, see §10.2.3.

As another application, we show that for extremal elliptic surfaces (see §10.3.1) and
for a certain class of real trigonal curves, including M -curves (see Theorem 10.73),
the topological and equisingular deformation classifications are equivalent. (Extremal
elliptic surfaces are defined over algebraic number fields, and both classifications are
also equivalent to the analytic classification in this case.)

Zariski k-plets We construct a few examples of exponentially large (with respect to
appropriate discrete invariants) collections of nonequivalent objects sharing the same
combinatorial data. The objects are: extremal elliptic surfaces (see Theorem 9.30),
irreducible trigonal curves (the ramification loci of the surfaces above), real trigonal
curves (see Example 10.85), and real Lefschetz fibrations (see Example 10.87). All of
the examples are essentially based on Theorem 10.20; thus, in each case, the objects
differ topologically, constituting the so-called Zariski k-plets. The trigonal curves also
share such commonly used invariants as the fundamental group and transcendental
lattice, see Addendum 9.36 and Theorem 9.31.

The transcendental lattice The j-invariant of an extremal elliptic surface is given
by its skeleton. We show that the homological invariant, hence the surface itself, can
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be encoded by an orientation of the skeleton, see Theorem 9.1, and develop a simple
algorithm computing the lattice of transcendental cycles and the Mordell–Weil group
of the surface in terms of its oriented skeleton, see Theorem 9.6. More generally, the
transcendental lattice and the torsion of the Mordell–Weil group of an arbitrary (not
necessarily extremal) elliptic surface can be computed in terms of its homological
invariant, regarded as a monodromy factorization, see Corollary 9.26. This algorithm
leads us to the definition of transcendental lattice as an invariant of factorizations, see
§10.2.3, and motivates a topological approach to the study of its arithmetic properties
such as the discriminant form and parity.

Contents at a glance

The principal concepts are introduced in Part I: we discuss bipartite ribbon graphs
and their relation to the subgroups of (appropriate quotients of) the free group F2,
see chapter 1, the modular group Γ and closely related braid group B3, see chapter 2,
and trigonal curves and elliptic surfaces, both complex and real, and their topological
counterpart, the so-called Lefschetz fibrations, see chapter 3. For the reader’s con-
venience, I have also included some background material that a topologist may not
be familiar with and reproduced the proofs (or at least ideas of the proofs) of a few
known statements, which are either difficult to find in the literature or closely related
to the main subject. A separate section in chapter 1 deals with pseudo-trees, which
are an important special class of skeletons used later on in the construction of various
exponentially large examples and in the study of simple monodromy factorizations.

In chapter 4, we follow [60] and describe the (equivariant) equisingular deformation
classes of (real) trigonal curves in terms of dessins—certain overdecorated embedded
graphs which must be considered up to a number of moves and which can be rather
difficult to handle. It turns out that, under some additional extremality assumptions,
dessins can be replaced with skeletons, i.q. subgroups of the modular group, making
their study feasible. In the real settings, this correspondence between skeletons and
deformation classes of curves is made precise in §10.3.2.

In chapter 5, we recall the notion of braid monodromy, adjusted to the particular
case of curves in ruled surfaces, and the Zariski–van Kampen theorem, computing the
fundamental group of such a curve in terms of its monodromy group. The principal
result here is a purely combinatorial computation of the braid monodromy of a trigonal
curve in terms of its dessin/skeleton (see §5.2) and, as an upshot, a strong restriction
on the monodromy group of a trigonal curve and the notion of universal curve. The
two latter lead us to Speculation 5.90, which is copiously illustrated in chapter 6.

Part II deals with the geometric applications, both old and new. Here, the chapter
names are self-explanatory. We compute and study the fundamental groups of trigonal
curves and related plane curves (see chapters 6, 7, and 8), discuss the transcendental
lattice of an extremal elliptic surface and work out a particular series of examples (see
chapter 9), and make a few steps towards the understanding of Γ-valued monodromy
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factorizations and their applications to the topology of trigonal curves, elliptic sur-
faces, and Lefschetz fibrations (see chapter 10; for completeness, a few more or less
classical results concerning the free groups Fn, symmetric groups Sn, and other braid
groups Bn are also cited here).

Appendices collect the material that would not fit elsewhere. Appendix A contains
a few assorted statements concerning integral lattices and quotient groups, especially
the so-called Zariski quotients, which appear as the fundamental groups of algebraic
curves. In Appendix B, for comparison and as a very simple application, we discuss
bigonal (hyperelliptic) curves in Hirzebruch surfaces. Appendix C is a listing of the
GAP code that handles technical details of some proofs. (Shorter ad hoc listings are
included into the main text; all GAP files are available for download.) Appendix D is
a glossary: we fix the notation and give a brief explanation of a few terms, with the
selection based upon the author’s own background and personal preferences.

Reading this book

Every effort has been made to produce a text as self-contained and cross-referenced
as possible, so that it can be read starting at any point with only a very minimal
background from the reader.

As usual, the end of a proof is marked with a . Some statements are marked with
a C , which means that either the statement is trivial (e.g., most corollaries) or its proof
has already been explained. If a statement is marked with a B , possibly followed by
a list of references, its proof is omitted and the reader is directed to the literature. In
most cases, the source is cited at the header.

We use the commonly accepted symbol := as a shortcut for ‘is defined as’.
Most symbols typeset in a special font (bold, Gothic, calligraphic, etc.) represent

objects or classes of objects introduced somewhere in the book; they should be found
in §D.2. A brief explanation of other more or less common terms, notations, and
concepts used throughout the whole text is given in §D.1.
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