Bilkent University
Department of Mathematics

Problem Of The Month

August 2005

Problem: Prove that the equation

$$
x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}+x_{5}^{3}=n
$$

has an integer solution for any integer n.
Solution: First of all, note that any number $n=6 k$ can be represented as a sum of four cubes:

$$
(k+1)^{3}+(-k)^{3}+(-k)^{3}+(k-1)^{3}=6 k .
$$

Now we note that

$$
\begin{aligned}
n=6 k+1 & =6 k+1^{3} \\
n=6 k+2 & =6(k-1)+2^{3} \\
n=6 k+3 & =6(k-4)+3^{3} \\
n=6 k+4 & =6(k+2)+(-2)^{3} \\
n=6 k+5 & =6(k+1)+(-1)^{3} .
\end{aligned}
$$

Therefore, our equation has an integer solution for all values of n.

