

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

June 2005

Problem: Prove that for arbitrary triangle $\triangle ABC$

$$|AB|\cos(B\widehat{C}A) + |BC|\cos(B\widehat{A}C) + |AC|\cos(A\widehat{B}C) \le \frac{|AB| + |BC| + |AC|}{2}.$$

Solution: Let |AB| = c, |BC| = a, |AC| = b, $\widehat{BAC} = \widehat{A}$, $\widehat{ABC} = \widehat{B}$, and $\widehat{BCA} = \widehat{C}$. Let us prove that $a \cos \widehat{A} + b \cos \widehat{B} \le c$. Indeed, since $c = a \cos \widehat{B} + b \cos \widehat{A}$, our inequality is equivalent to the inequality

$$(a-b)(\cos\widehat{A} - \cos\widehat{B}) \le 0.$$

The last inequality is correct, since $\cos x$ is a decreasing function on the interval $[0, \pi]$ and $\cos \hat{A} \ge \cos \hat{B}$ if $a \ge b$. Similarly we prove that

 $a\cos \widehat{A} + c\cos \widehat{C} \le b$ and $b\cos \widehat{B} + c\cos \widehat{C} \le a$.

The sum of these inequalities gives the desired inequality.