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Problem: Suppose that, for all −1 < x < 1, the following inequality

ax2 + bx + c ≤ 1√
1− x2

is held. Find the maximum possible value of
a

2
+ c.

Solution: Put x = ±1/
√

2 into the inequality:
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The sum of these inequalities gives
a

2
+ c ≤

√
2

Let us show that a
2

+ c can take
√

2. Indeed, if a =
√

2, b = 0, c =
√

2
2

then our
inequality takes the following form:
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The last inequality is a consequence of the arithmetic-geometric inequality:
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≤
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= 1.

Thus, the maximum of a
2

+ c is
√

2.


