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Problem: Suppose that, for all —1 < x < 1, the following inequality

ax’ +br+c¢<
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is held. Find the maximum possible value of

a

§ + c.
Solution: Put 2 = 4+1/+/2 into the inequality:
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The sum of these inequalities gives
g +c< V2

Let us show that £ + ¢ can take V2. Indeed, if a = \/5, b=0,c= g then our
inequality takes the following form:
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The last inequality is a consequence of the arithmetic-geometric inequality:

<\/§x + g) V1—a? = \/(x2 + %)(xz + %)(2 — 22?)
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Thus, the maximum of § + c is V2.




