Bilkent University
Department of Mathematics

## Problem Of The Month

April 2005

Problem: Suppose that, for all $-1<x<1$, the following inequality

$$
a x^{2}+b x+c \leq \frac{1}{\sqrt{1-x^{2}}}
$$

is held. Find the maximum possible value of

$$
\frac{a}{2}+c
$$

Solution: Put $x= \pm 1 / \sqrt{2}$ into the inequality:

$$
\begin{aligned}
& \frac{a}{2}+\frac{b}{\sqrt{2}}+c \leq \sqrt{2} \\
& \frac{a}{2}-\frac{b}{\sqrt{2}}+c \leq \sqrt{2}
\end{aligned}
$$

The sum of these inequalities gives

$$
\frac{a}{2}+c \leq \sqrt{2}
$$

Let us show that $\frac{a}{2}+c$ can take $\sqrt{2}$. Indeed, if $a=\sqrt{2}, b=0, c=\frac{\sqrt{2}}{2}$ then our inequality takes the following form:

$$
\sqrt{2} x^{2}+\frac{\sqrt{2}}{2} \leq \frac{1}{\sqrt{1-x^{2}}}
$$

The last inequality is a consequence of the arithmetic-geometric inequality:

$$
\begin{aligned}
\left(\sqrt{2} x+\frac{\sqrt{2}}{2}\right) \cdot \sqrt{1-x^{2}} & =\sqrt{\left(x^{2}+\frac{1}{2}\right)\left(x^{2}+\frac{1}{2}\right)\left(2-2 x^{2}\right)} \\
& \leq \sqrt{\left(\frac{x^{2}+\frac{1}{2}+x^{2}+\frac{1}{2}+2-2 x^{2}}{3}\right)^{3}}=1
\end{aligned}
$$

Thus, the maximum of $\frac{a}{2}+c$ is $\sqrt{2}$.

