Bilkent University
Department of Mathematics

Problem Of The Month

December 2022

Problem:

A positive integer is said to be square free if it is not divisible by a square greater than 1 . We say that a positive integer is simple if each of the numbers $a, a+1$ and $a+2$ is square free. Are there infinitely many simple integers?

Solution: Answer: There are infinitely many simple integers.
Let n be a fixed positive integer. Let us consider the set $A(n)$ of all integers from $\left[1,4 n^{2}\right]$ not divisible by 4 . For each integer $k \in A(n)$ divisible by 9 we have $k=9,18,27$ $(\bmod 36)$. The total number of such integers n is not greater than $3 \cdot \frac{4 n^{2}}{36}+3$. For each integer $k \in A(n)$ divisible by 25 we have $k=25,50,75(\bmod 100)$. The total number of such integers n is not greater than $3 \cdot \frac{4 n^{2}}{100}+3$. By continuing similar argument till integer $k \in A(n)$ divisible by $(2 n-1)^{2}$ we get that the total number of not square free integers in $A(n)$ is not greater than

$$
\begin{aligned}
& 3 n^{2}\left(\frac{1}{9}+\frac{1}{25}+\cdots+\frac{1}{\left(2 n-1^{2}\right.}\right)+3(n-1)=\frac{3 n^{2}}{2}\left(\frac{2}{9-1}+\frac{2}{25-1}+\cdots+\frac{2}{(2 n-1)^{2}-1}\right)+3(n-1) \\
& =\frac{3 n^{2}}{2}\left(\frac{1}{3-1}-\frac{1}{3+1}+\frac{1}{5-1}-\frac{1}{5+1} \cdots+\frac{1}{(2 n-1)-1}-\frac{1}{(2 n-1)+1}\right)+3 n<\frac{3 n^{2}}{4}+3 n
\end{aligned}
$$

There are n^{2} disjoint triples of consecutive integers in $A(n):(1,2,3),(5,6,7),(9,10,11)$, \ldots By the inequality above at least $n^{2}-\left(\frac{3 n^{2}}{4}+3 n\right)=\frac{n^{2}}{4}-3 n$ of these triples are constituted only by square free integers. Since $\frac{n^{2}}{4}-3 n$ is unboundedly increasing while $n \rightarrow \infty$ we are done.

