Bilkent University Department of Mathematics

Problem Of The Month

June 2022

Problem:

Let \mathbb{Q} and \mathbb{Q}^{+}be the set of all rational and all positive rational numbers, respectively. Find all functions $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}$ satisfying

$$
\begin{equation*}
f(x)+f(y)=\left(f(x+y)+\frac{1}{x+y}\right)(1-x y+f(x y)) \tag{*}
\end{equation*}
$$

for all $x, y \in \mathbb{Q}^{+}$.

Solution: Answer: $f(x)=x-\frac{1}{x}, \forall x \in \mathbb{Q}^{+}$.
We will prove three lemmas.
Lemma 1. $f(1)=0$.
Proof: By putting $x=y=1$ to $(*)$ we get $2 f(1)=\left(f(2)+\frac{1}{2}\right) f(1)$. Assume that $f(1) \neq 0$. Then readily $f(2)=\frac{3}{2}$. By putting $x=y=2$ to $(*)$ we get $3=2 f(2)=$ $\left(f(4)+\frac{1}{4}\right)(f(4)-3)$. Therefore, either $f(4)=\frac{15}{4}$ or $f(4)=-1$. By putting $y=1$ to $(*)$ we get $f(x)+f(1)=\left(f(x+1)+\frac{1}{x+1}\right)(1-x+f(x))$. Taking $x=2,3,4,5$ in the last equation we get

$$
\begin{align*}
& \frac{3}{2}+f(1)=\left(f(3)+\frac{1}{3}\right) \cdot \frac{1}{2} \tag{1}\\
& f(3)+f(1)=\left(f(4)+\frac{1}{4}\right)(f(3)-2 \tag{2}
\end{align*}
$$

$$
\begin{align*}
& f(4)+f(1)=\left(f(5)+\frac{1}{5}\right)(f(4)-3) \tag{3}\\
& f(5)+f(1)=\left(f(6)+\frac{1}{6}\right)(f(5)-4) \tag{4}
\end{align*}
$$

If $f(4)=-1,(1)$ and (2) yield $f(1)=-\frac{19}{27} \quad$ and $f(3)=\frac{34}{27}$, and (3) and (4) yield $f(5)=\frac{61}{270}, f(6)=-\frac{245}{6114}$. Finally by putting $x=2, y=3$ to $(*)$ we get

$$
f(2)+f(3)=\left(f(5)+\frac{1}{5}\right)(f(6)-5)
$$

This relationship is not held for values of $f(2), f(3), f(5), f(6)$ found above. Hence the only possibility is $f(4)=\frac{15}{4}$. In this case we have

$$
f(3)+f(1)=4(f(3)-2), \quad \frac{3}{2}+f(1)=\left(f(3)+\frac{1}{3}\right) \cdot \frac{1}{2} .
$$

Solving last two equations we get $f(1)=0$. Done.
Lemma 2. $f(2)=\frac{3}{2}$.
Proof: Since $f(1)=0$, for all $x \in \mathbb{Q}^{+}$we have

$$
\begin{equation*}
f(x)=\left(f(x+1)+\frac{1}{x+1}\right)(1-x+f(x)) \tag{5}
\end{equation*}
$$

Taking $x=2,3$ in (5), we get

$$
f(2)=\left(f(3)+\frac{1}{3}\right)(f(2)-1), \quad f(3)=\left(f(4)+\frac{1}{4}\right)(f(3)-2)
$$

By putting $x=2, y=2$ to $(*)$ we get $2 f(2)=\left(f(4)+\frac{1}{4}\right)(f(4)-3)$. Last three equations yield a cubic equation in terms of $t=f(4)$ as given below:

$$
16 t^{3}-32 t^{2}-101 t-15=0
$$

$t=f(4)$ should be rational as the range of f is rational numbers. The only rational root of this equation is $t=\frac{15}{4}$. Then it readily follows that $f(3)=\frac{8}{3}$ and $f(2)=\frac{3}{2}$.

Lemma 3. $f(n)=n-\frac{1}{n}$ for all positive integers n.

Proof: $\quad f(1)=0$ for $n=1$. Proof for $n \geq 2$ readily follows from (5) by induction over n. Done.

Finally we prove that for all $x=\frac{m}{n}$

$$
\begin{equation*}
f(m / n)=\frac{m}{n}-\frac{n}{m} . \tag{6}
\end{equation*}
$$

Proof will be carried out by induction over $m \geq 1$. In the base case $m=1$ by putting $y=\frac{1}{x}$ to $(*)$ we get that for all $x \in \mathbb{Q}^{+}$

$$
f(x)+f\left(\frac{1}{x}\right)=0
$$

and by Lemma 3 for all positive integers n we obtain the required formula

$$
f\left(\frac{1}{n}\right)=\frac{1}{n}-n
$$

Now suppose that (6) is correct for m. By putting $x=\frac{m}{n}, y=\frac{1}{n}$ to (*) we get

$$
\begin{equation*}
f(m / n)+f(1 / n)=\left(f((m+1) / n)+\frac{n}{m+1}\right)\left(1-\frac{m}{n^{2}}+f\left(m / n^{2}\right)\right) . \tag{7}
\end{equation*}
$$

Putting $f(m / n)=\frac{m}{n}-\frac{n}{m}$ and $f\left(m / n^{2}\right)=\frac{m}{n^{2}}-\frac{n^{2}}{m}$ to (7) and simplifying we get the required formula for $m+1$:

$$
f\left(\frac{m+1}{n}\right)=\frac{m+1}{n}-\frac{n}{m+1}
$$

We are done.

