

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

May 2022

Problem:

Let x, y, z be three positive real numbers satisfying

$$xyz = 1$$
 ve $\frac{y}{z}(y - x^2) + \frac{z}{x}(z - y^2) + \frac{x}{y}(x - z^2) = 0.$

Let t_1 , t_2 and t_3 be the smallest, the median and the largest of these three numbers, respectively. Find the smallest possible value of

$$\frac{t_1 + t_3}{t_2}$$

Solution: Answer: $\frac{5}{\sqrt[5]{256}}$.

Let $\frac{x^2}{y} = a$, $\frac{y^2}{z} = b$ and $\frac{z^2}{x} = c$. The problem conditions in this new variables take the following form

$$abc = 1$$
, $a+b+c = ab+bc+ca$.

Now we readily get (a-1)(b-1)(c-1) = 0. Therefore, at least one of the numbers a, b, c should be equal to 1. Without loss of generality we assume that a = 1. Then $y = x^2$ and $z = \frac{1}{x^3}$.

If $0 < x \le 1$ then $x^2 \le x \le \frac{1}{x^3}$ and if x > 1 then $\frac{1}{x^3} < x < x^2$. Hence in all cases x is a median: $t_2 = x$. Finally by AM-GM inequality we get

$$\frac{x^2 + \frac{1}{x^3}}{x} = x + \frac{1}{x^4} = \frac{x}{4} + \frac{x}{4} + \frac{x}{4} + \frac{x}{4} + \frac{1}{x^4} \ge 5\sqrt[5]{\frac{1}{4^4}}.$$

The equality holds when $\frac{x}{4} = \frac{1}{x^4}$ or $x = \sqrt[5]{4}$. In this case $y = x^2 = \sqrt[5]{16}$ and $z = \frac{1}{x^3} = \frac{1}{\sqrt[5]{64}}$. Thus, $\frac{t_1 + t_3}{t_2}$ takes its smallest value $\frac{5}{\sqrt[5]{256}}$ at $x = \sqrt[5]{4}$, $y = \sqrt[5]{16}$, and $z = \frac{1}{\sqrt[5]{64}}$. Done.