Bilkent University

 Department of Mathematics
Problem Of The Month

May 2022

Problem:

Let x, y, z be three positive real numbers satisfying

$$
x y z=1 \quad \text { ve } \quad \frac{y}{z}\left(y-x^{2}\right)+\frac{z}{x}\left(z-y^{2}\right)+\frac{x}{y}\left(x-z^{2}\right)=0 .
$$

Let t_{1}, t_{2} and t_{3} be the smallest, the median and the largest of these three numbers, respectively. Find the smallest possible value of

$$
\frac{t_{1}+t_{3}}{t_{2}} .
$$

Solution: Answer: $\frac{5}{\sqrt[5]{256}}$.
Let $\frac{x^{2}}{y}=a, \frac{y^{2}}{z}=b$ and $\frac{z^{2}}{x}=c$. The problem conditions in this new variables take the following form

$$
a b c=1, \quad a+b+c=a b+b c+c a .
$$

Now we readily get $(a-1)(b-1)(c-1)=0$. Therefore, at least one of the numbers a, b, c should be equal to 1 . Without loss of generality we assume that $a=1$. Then $y=x^{2}$ and $z=\frac{1}{x^{3}}$.
If $0<x \leq 1$ then $x^{2} \leq x \leq \frac{1}{x^{3}}$ and if $x>1$ then $\frac{1}{x^{3}}<x<x^{2}$. Hence in all cases x is a median: $t_{2}=x$. Finally by AM-GM inequality we get

$$
\frac{x^{2}+\frac{1}{x^{3}}}{x}=x+\frac{1}{x^{4}}=\frac{x}{4}+\frac{x}{4}+\frac{x}{4}+\frac{x}{4}+\frac{1}{x^{4}} \geq 5 \sqrt[5]{\frac{1}{4^{4}}}
$$

The equality holds when $\frac{x}{4}=\frac{1}{x^{4}}$ or $x=\sqrt[5]{4}$. In this case $y=x^{2}=\sqrt[5]{16}$ and $z=\frac{1}{x^{3}}=\frac{1}{\sqrt[5]{64}}$. Thus, $\frac{t_{1}+t_{3}}{t_{2}}$ takes its smallest value $\frac{5}{\sqrt[5]{256}}$ at $x=\sqrt[5]{4}, y=\sqrt[5]{16}$, and $z=\frac{1}{\sqrt[5]{64}}$. Done.

