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Problem:

Let x,y, z be three positive real numbers satisfying
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Let t1, to and t3 be the smallest, the median and the largest of these three numbers,
respectively. Find the smallest possible value of
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Solution: Answer: — .
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Let — =a, = =0 and — = ¢ . The problem conditions in this new variables take the
z x

following form

abc=1, a+b+c=ab+ bc+ ca.

Now we readily get (a —1)(b—1)(c—1) = 0. Therefore, at least one of the numbers a, b, c
should be equal to 1. Without loss of generality we assume that a = 1. Then y = 2% and
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Z = E
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If 0 < x <1 then z? <x<—3and1fx>1then—<x<x Hence in all cases z is a
median: ¢ty = z. Finally by AM GM inequality we get
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The equality holds when T Zor z = v/4. In this case y = 22> = /16 and
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1t s takes its smallest value at ¢ = v/4, y = v/16, and
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