

Bilkent University
Department of Mathematics

Problem Of The Month

April 2022

Problem:

For a polynomial Q with integer coefficient and prime p, we say that Q excludes p if there is no integer n for which $p \mid Q(n)$. Does there exist a polynomial with integer coefficients having no rational roots which excludes exactly one prime?

Solution: Answer: Yes, for example $Q(x)=\left(2 x^{3}+1\right)\left(x^{2}-x+1\right)$ satisfies all conditions.
Clearly $Q(x)$ has no rational roots. We will show that the only prime excluded by $Q(x)$ is $p=2$.

Observation 1: For any prime p satisfying $p \equiv 1(\bmod 3)$ there exists an integer n such that $n^{2}-n+1 \equiv 0(\bmod p)$.

Proof. Let ω be a primitive root modulo p and $n=-\omega^{(p-1) / 3}$. Then $n^{3} \equiv-1(\bmod p)$ and $n \not \equiv-1(\bmod p)$. Now since $n^{3}+1=(n+1)\left(n^{2}-n+1\right)$ we get $n^{2}-n+1 \equiv 0(\bmod p)$.

Observation 2: For any odd prime p satisfying $p \equiv 2(\bmod 3)$ there exists an integer n such that $2 n^{3}+1 \equiv 0(\bmod p)$.

Proof. Let a be an integer satisfying $2 a+1 \equiv 0(\bmod p)$. Since $3 \mid p-2$ we get $3 \mid 2 p-1$. Then for the integer $n=a^{(2 p-1) / 3}$ by Fermat's little theorem we have $n^{3} \equiv a^{2 p-1} \equiv a$ $(\bmod p)$. Therefore, $2 n^{3}+1 \equiv 2 a+1 \equiv 0(\bmod p)$.
$Q(x)$ does not exclude $p=3$ since $3 \mid Q(2)$. By Observation 1 any prime $p \equiv 1(\bmod 3)$ is not excluded by $Q(x)$. By Observation 2 any odd prime $p \equiv 2(\bmod 3)$ is not excluded by $Q(x)$. Since both $2 n^{3}+1$ and $n^{2}-n+1$ are always odd numbers $p=2$ is excluded by $Q(x)$. We are done.

