

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

March 2022

Problem:

Find all pairs (p,q) od prime numbers satisfying

$$2^p = 2^{q-2} + q!$$

Solution: Answer: (p,q) = (3,3), (7,5).

If q = 2 then no pair (p, 2) satisfies the equation. If q = 3 and q = 5 then the only pairs satisfying the equation are (3, 3) and (5, 7), respectively.

Let us show that there is no solution for $q \ge 7$. Consider the binary representation of q: $q = 2^{a_1} + 2^{a_2} + \dots + 2^{a_r}$ where $0 \le a_1 < a_2 < \dots < a_r$ are integers and r is the number of 1's in the binary representation of q. For all $1 \le k \le r$ and $1 \le i \le a_k$ the number $\frac{2^{a_k}}{2^i}$ is an integer. Furthermore, when $i > a_k$, we get $\left\lfloor \frac{2^{a_k}}{2^i} \right\rfloor = 0$. Finally, we have $\sum_{i=1}^{\infty} \left\lfloor \frac{2^{a_k}}{2^i} \right\rfloor = 2^{a_k} - 1$. Therefore, $v_2(q!)$, the highest power of 2 in q! can be written as $v_2(q!) = \sum_{i=1}^{\infty} \left\lfloor \frac{q}{2^i} \right\rfloor = q - r$.

The original equation is equivalent to $2^{q-2}(2^{p-q+2}-1) = q!$, where p-q+2 > 0. Hence $v_2(q!) = q-2$. Therefore, r = 2 and $q = 2^{a_1} + 2^{a_2}$. Since q is a prime number, we get $a_1 = 0$ and $a_2 = 2^t$ for some non-negative integer t (q is a Fermat prime).

As $q \ge 7$ we have $2^{p-q+2} \equiv 1 \pmod{7}$ and $p-q+2 \equiv 0 \pmod{3}$. Using the fact $q = 2^{2^t} + 1 \equiv 2 \pmod{3}$ we get $3 \mid p$ and hence p = 3. For $q \ge 7$ no pair (3, q) satisfies the equation.