Problem Of The Month

March 2022

Problem:

Find all pairs (p, q) od prime numbers satisfying

$$
2^{p}=2^{q-2}+q!
$$

Solution: Answer: $(p, q)=(3,3),(7,5)$.
If $q=2$ then no pair $(p, 2)$ satisfies the equation. If $q=3$ and $q=5$ then the only pairs satisfying the equation are $(3,3)$ and $(5,7)$, respectively.

Let us show that there is no solution for $q \geq 7$. Consider the binary representation of $q: q=2^{a_{1}}+2^{a_{2}}+\cdots+2^{a_{r}}$ where $0 \leq a_{1}<a_{2}<\cdots<a_{r}$ are integers and r is the number of 1's in the binary representation of q. For all $1 \leq k \leq r$ and $1 \leq i \leq a_{k}$ the number $\frac{2^{a_{k}}}{2^{i}}$ is an integer. Furthermore, when $i>a_{k}$, we get $\left\lfloor\frac{2^{a_{k}}}{2^{i}}\right\rfloor=0$. Finally, we have $\sum_{i=1}^{\infty}\left\lfloor\frac{2^{a_{k}}}{2^{i}}\right\rfloor=2^{a_{k}}-1$. Therefore, $v_{2}(q!)$, the highest power of 2 in q ! can be written as

$$
v_{2}(q!)=\sum_{i=1}^{\infty}\left\lfloor\frac{q}{2^{i}}\right\rfloor=q-r .
$$

The original equation is equivalent to $2^{q-2}\left(2^{p-q+2}-1\right)=q$!, where $p-q+2>0$. Hence $v_{2}(q!)=q-2$. Therefore, $r=2$ and $q=2^{a_{1}}+2^{a_{2}}$. Since q is a prime number, we get $a_{1}=0$ and $a_{2}=2^{t}$ for some non-negative integer t (q is a Fermat prime).

As $q \geq 7$ we have $2^{p-q+2} \equiv 1(\bmod 7)$ and $p-q+2 \equiv 0(\bmod 3)$. Using the fact $q=2^{2^{t}}+1 \equiv 2(\bmod 3)$ we get $3 \mid p$ and hence $p=3$. For $q \geq 7$ no pair $(3, q)$ satisfies the equation.

