Problem Of The Month

January 2022

Problem:

A pair (n, k), where $n>k \geq 0$ are integers is said to be strange if for any $a \equiv k(\bmod n)$ and any positive integer m the expression

$$
\frac{a^{m}+3^{m}}{a^{2}-3 a+1}
$$

is not integer. Find the smallest n such that (n, k) is strange for some k.

Solution: Answer: $n=11$.
Let $a \equiv 5(\bmod 11)$. Then $11 \mid a^{2}-3 a+1$. On the other hand since

$$
\begin{aligned}
& \left\{5^{m}, m=1,2, \ldots\right\}=5,3,4,9,1,5, \ldots \\
& \left\{3^{m}, m=1,2, \ldots\right\}=3,9,5,4,1,3, \ldots
\end{aligned}
$$

$a^{m}+3^{m}=5^{m}+3^{m}$ is never integer. Therefore, $(11,5)$ is strange.
Let $f(a, m)=\frac{a^{m}+3^{m}}{a^{2}-3 a+1}$. Now we prove that (n, k) in not strange for $1 \leq n \leq 10$ by showing that for each $1 \leq n \leq 10$ and each $0 \leq k<n$ there exist $a \equiv k(\bmod n)$ such that $f(a, m)$ is integer.

For $a=0,1,2,3$ the expression $a^{2}-3 a+1= \pm 1$ and hence $f(a, m)$ is always integer. Therefore, (n, k) is not strange for any n and $k=0,1,2,3$.

Note that $f(4,2), f(6,9), f(7,2), f(8,20)$ are integers. Therefore, (n, k) is not strange for any n and $k=4,6,7,8$.

Since $f(-1,2)$ is integer $(6,5)$ is not strange.
Since $f(12,9)$ is integer $(7,5)$ is not strange.
Since $f(-3,1)$ is integer $(8,5)$ is not strange.
Since $f(-4,14)$ is integer $(9,5)$ is not strange.
Since $f(-5,20)$ is integer $(10,5)$ is not strange.
Since $f(-1,2)$ is integer $(10,9)$ is not strange.
We are done.

