Problem Of The Month

December 2021

Problem:

Find all primes p for which there exist an odd integer n and a polynomial $Q(x)$ with integer coefficients such that the polynomial

$$
1+p n^{2}+\prod_{i=1}^{2 p-2} Q\left(x^{i}\right)
$$

has at least one integer root.

Solution: Answer: $p=2$.
Let $P(x)=1+p n^{2}+\prod_{i=1}^{2 p-2} Q\left(x^{i}\right)$. For $p=2, n=1$ and $Q(x)=2 x+1$ are suitable, since the corresponding polynomial has a root -1 :

$$
1+2 \cdot 1^{2}+(2 \cdot(-1)+1)\left(2 \cdot\left(-1^{2}\right)+1\right)=0
$$

Let us show that for all primes $p \geq 3$ no suitable n and $Q(x)$ exist. By Fermat's little theorem $x^{i}=x^{i+p-1}$ and hence $Q\left(x^{i}\right)=Q\left(x^{i+p-1}\right)$ for all $1 \leq i \leq p-1$. Therefore, $P(x)=0$ in modulo p leads to

$$
0 \equiv 1+p n^{2}+\prod_{i=1}^{2 p-2} Q\left(x^{i}\right) \equiv 1+\left(\prod_{i=1}^{p-1} Q\left(x^{i}\right)\right)^{2}
$$

Thus -1 is a quadratic residue modulo p and hence $p \equiv 1(\bmod 4)$. Then $P(x)=0$ in modulo 4 leads to

$$
\begin{equation*}
0 \equiv 1+1+\prod_{i=1}^{2 p-2} Q\left(x^{i}\right) \equiv 2+\left(\prod_{i=1}^{p-1} Q\left(x^{i}\right)\right)^{2} \tag{1}
\end{equation*}
$$

Note that for integer x and positive i, j the values $Q\left(x^{i}\right)$ and $Q\left(x^{j}\right)$ have the same parity. Therefore, both cases when all $Q\left(x^{i}\right)$ are odd and all $Q\left(x^{i}\right)$ are even we get a contradiction with (1). Done.

