

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

November 2021

Problem:

Let $1 < a_1 < a_2 < \cdots < a_n$ and b_1, b_2, \ldots, b_n be integers such that for any integer M, at least one of the numbers

$$\frac{M-b_i}{a_i}, \ i=1,2,\ldots,n$$

is an integer. Find the smallest possible value of n.

Solution: Answer: 5.

Every integer N satisfies at least one of the congruences $N \equiv 0 \pmod{2}$, $N \equiv 1 \pmod{3}$, $N \equiv 3 \pmod{4}$, $N \equiv 5 \pmod{6}$, $N \equiv 9 \pmod{12}$. Therefore n can be 5. Let us show that $n \leq 4$ is not possible.

Let $1 < k_1 \leq k_2 \leq \cdots \leq k_n$ and a_1, a_2, \ldots, a_n be integers, and let $K = \operatorname{lcm}(k_1, k_2, \ldots, k_n)$. Since at most $\frac{K}{k_1} + \frac{K}{k_2} + \cdots + \frac{K}{k_n}$ integers from 1 to K can satisfy at least one of the congruences $x \equiv a_i \pmod{k_i}$ for $1 \leq i \leq n$, we must have $\frac{1}{k_1} + \frac{1}{k_2} + \cdots + \frac{1}{k_n} \geq 1$ if every integer satisfies at least one of these congruences.

Now assume that $1 < k_1 < k_2 < \cdots < k_n$ and a_1, a_2, \ldots, a_n satisfy the condition of the problem and that $n \leq 4$ has the smallest possible value. If $k_1 = 3$, then

$$\frac{1}{k_1} + \frac{1}{k_2} + \dots + \frac{1}{k_n} \le \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} = \frac{19}{20} < 1.$$

Therefore $k_1 = 2$. Without loss of generality we may assume that $a_1 = 1$. For $2 \le i \le n$, let $k'_i = k_i$ and $a'_i \equiv 2^{-1}a_i \pmod{k_i}$ if k_i is odd, and let $k'_i = \frac{k_i}{2}$ and $a'_i = \frac{a_i}{2}$ if k_i is even. The integers k'_2, \ldots, k'_n and a'_2, \ldots, a'_n satisfy the condition of the problem except that k'_i might not be distinct. Therefore by the minimality of n, we must have n = 4 and $\{k_2, k_3, k_4\} = \{2m + 1, 4m + 2, k\}.$

If k is odd, then
$$\{k'_2, k'_3, k'_4\} = \{2m+1, 2m+1, k\}$$
 and $\frac{2}{2m+1} + \frac{1}{k} \ge 1$. Since $\frac{2}{2m+1} + \frac{1}{k} \le \frac{2}{3} + \frac{1}{5} = \frac{13}{15} < 1$,

this is not possible.

If k is even, then $\{k'_2, k'_3, k'_4\} = \{2m+1, 2m+1, \frac{k}{2}\}$ and $\frac{2}{2m+1} + \frac{2}{k} \ge 1$. If $2m+1 \ge 5$ or 2m+1=3 and $k \ge 8$, we get contradictions because

$$\frac{2}{5} + \frac{2}{4} = \frac{9}{10} < 1$$
 and $\frac{2}{3} + \frac{2}{8} = \frac{11}{12} < 1$.

The only remaining case is 2m + 1 = 3 and k = 4. This gives $\{k'_2, k'_3, k'_4\} = \{3, 3, 2\}$. Since the integers in a congruence class modulo 3 cannot be all even or all odd, this also leads to a contradiction. We are done.