Bilkent University
Department of Mathematics

Problem Of The Month

November 2021

Problem:

Let $1<a_{1}<a_{2}<\cdots<a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be integers such that for any integer M, at least one of the numbers

$$
\frac{M-b_{i}}{a_{i}}, i=1,2, \ldots, n
$$

is an integer. Find the smallest possible value of n.

Solution: Answer: 5.
Every integer N satisfies at least one of the congruences $N \equiv 0(\bmod 2), N \equiv 1(\bmod 3)$, $N \equiv 3(\bmod 4), N \equiv 5(\bmod 6), N \equiv 9(\bmod 12)$. Therefore n can be 5 . Let us show that $n \leq 4$ is not possible.

Let $1<k_{1} \leq k_{2} \leq \cdots \leq k_{n}$ and $a_{1}, a_{2}, \ldots, a_{n}$ be integers, and let $K=\operatorname{lcm}\left(k_{1}, k_{2}, \ldots, k_{n}\right)$. Since at most $\frac{K}{k_{1}}+\frac{K}{k_{2}}+\cdots+\frac{K}{k_{n}}$ integers from 1 to K can satisfy at least one of the congruences $x \equiv a_{i}\left(\bmod k_{i}\right)$ for $1 \leq i \leq n$, we must have $\frac{1}{k_{1}}+\frac{1}{k_{2}}+\cdots+\frac{1}{k_{n}} \geq 1$ if every integer satisfies at least one of these congruences.

Now assume that $1<k_{1}<k_{2}<\cdots<k_{n}$ and $a_{1}, a_{2}, \ldots, a_{n}$ satisfy the condition of the problem and that $n \leq 4$ has the smallest possible value. If $k_{1}=3$, then

$$
\frac{1}{k_{1}}+\frac{1}{k_{2}}+\cdots+\frac{1}{k_{n}} \leq \frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{19}{20}<1 .
$$

Therefore $k_{1}=2$. Without loss of generality we may assume that $a_{1}=1$. For $2 \leq i \leq n$, let $k_{i}^{\prime}=k_{i}$ and $a_{i}^{\prime} \equiv 2^{-1} a_{i}\left(\bmod k_{i}\right)$ if k_{i} is odd, and let $k_{i}^{\prime}=\frac{k_{i}}{2}$ and $a_{i}^{\prime}=\frac{a_{i}}{2}$ if k_{i} is even. The integers $k_{2}^{\prime}, \ldots, k_{n}^{\prime}$ and $a_{2}^{\prime}, \ldots, a_{n}^{\prime}$ satisfy the condition of the problem except
that k_{i}^{\prime} might not be distinct. Therefore by the minimality of n, we must have $n=4$ and $\left\{k_{2}, k_{3}, k_{4}\right\}=\{2 m+1,4 m+2, k\}$.

If k is odd, then $\left\{k_{2}^{\prime}, k_{3}^{\prime}, k_{4}^{\prime}\right\}=\{2 m+1,2 m+1, k\}$ and $\frac{2}{2 m+1}+\frac{1}{k} \geq 1$. Since

$$
\frac{2}{2 m+1}+\frac{1}{k} \leq \frac{2}{3}+\frac{1}{5}=\frac{13}{15}<1
$$

this is not possible.
If k is even, then $\left\{k_{2}^{\prime}, k_{3}^{\prime}, k_{4}^{\prime}\right\}=\left\{2 m+1,2 m+1, \frac{k}{2}\right\}$ and $\frac{2}{2 m+1}+\frac{2}{k} \geq 1$. If $2 m+1 \geq 5$ or $2 m+1=3$ and $k \geq 8$, we get contradictions because

$$
\frac{2}{5}+\frac{2}{4}=\frac{9}{10}<1 \text { and } \frac{2}{3}+\frac{2}{8}=\frac{11}{12}<1
$$

The only remaining case is $2 m+1=3$ and $k=4$. This gives $\left\{k_{2}^{\prime}, k_{3}^{\prime}, k_{4}^{\prime}\right\}=\{3,3,2\}$. Since the integers in a congruence class modulo 3 cannot be all even or all odd, this also leads to a contradiction. We are done.

