

Bilkent University
Department of Mathematics

Problem Of The Month

October 2021

Problem:

A positive integer number s is said to be n-smooth if $s=a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}$, where each $a_{i}, i=1,2, \ldots, n$ is divisible by n. An integer number s is said to be n-rough if $s=a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}$, where each $a_{i}, i=1,2, \ldots, n$ is not divisible by n. Find all positive integers n for which any n-smooth number is n-rough number.

Solution: Answer: All positive integers except 1,2 and 4.
A positive integer n is said to be good if any n-smooth number is n-rough number. We first show that if n is good, so is any multiple of n. Let $m=n k$ and $x_{1}, x_{2}, \ldots, x_{m}$ be integers such that $m \mid x_{i}$ for all $1 \leq i \leq m$. Then since $n \mid x_{i}$ for all $1 \leq i \leq m$ and n is good, there exist integers $y_{1}, y_{2}, \ldots, y_{m}$ such that

$$
\sum_{i=n l+1}^{n(l+1)} x_{i}^{2}=\sum_{i=n l+1}^{n(l+1)} y_{i}^{2}
$$

for all $0 \leq l \leq k-1$ and $n \nmid y_{i}$ for all $1 \leq i \leq m$. Therefore we obtain that

$$
\sum_{i=1}^{m=n k} x_{i}^{2}=\sum_{i=1}^{m=n k} y_{i}^{2}
$$

and $m=n k \nmid y_{i}$ for all $1 \leq i \leq m$.
Next we show that all positive odd integers are good.
Lemma: Let n be a positive odd integer and $x_{1}, x_{2}, \ldots, x_{n}$ be integers with at least one of them is not divisibly by n. Then there exist integers $y_{1}, y_{2}, \ldots, y_{n}$ such that none of them is divisible by n and

$$
\sum_{i=1}^{n}\left(n x_{i}\right)^{2}=\sum_{i=1}^{n} y_{i}^{2}
$$

Proof: Without loss of generality we may assume that $n \nmid x_{1}$. Let $X=2 \sum_{i=1}^{n} x_{i}$. If $n \mid X$, then replace x_{1} by $-x_{1}$. As $n \nmid x_{1}$ and n is odd, $n \nmid 4 x_{1}$ and hence we may assume that $n \nmid X$. Then by the following identity

$$
\sum_{i=1}^{n}\left(n x_{i}\right)^{2}=\sum_{i=1}^{n}\left(X-n x_{i}\right)^{2}
$$

letting $y_{i}=X-n x_{i}$ for all $1 \leq i \leq n$ works.
For a positive odd integer n, if a positive integer a is sum of squares of n integers with each of them is divisible by n, then there exist integers $x_{1}, x_{2}, \ldots, x_{n}$ and a positive integer r such that $a=\sum_{i=1}^{n}\left(n^{r} x_{i}\right)^{2}$ and $n \nmid x_{i}$ for some $1 \leq i \leq n$. Applying the lemma r times we can find integers $y_{1}, y_{2}, \ldots, y_{n}$ such that $a=\sum_{i=1}^{n} y_{i}^{2}$ and $n \nmid y_{i}$ for all $1 \leq i \leq n$.
Next we show that 8 is good. Let a be positive integer which is sum of squares of 8 integers with each of them is divisible by 8 . Then $64 \mid a$, hence $a \geq 64$ and $a=$ $1^{2}+4^{2}+4^{2}+4^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}$ for some integers $x_{1}, x_{2}, x_{3}, x_{4}$ by Lagrange's foursquare theorem. Note that $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \equiv 7(\bmod 8)$ and the only way to get 7 as sum of four quadratic residues in $(\bmod 8)$ is $1+1+1+4$. Therefore, $8 \nmid x_{i}$ for all $1 \leq i \leq 4$.

Finally, 4 is not good since n-smooth number $32=4^{2}+4^{2}+0^{2}+0^{2}$ is not n-rough. Therefore, 1 and 2 are also not good numbers.

