

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

October 2021

Problem:

A positive integer number s is said to be *n*-smooth if $s = a_1^2 + a_2^2 + \cdots + a_n^2$, where each $a_i, i = 1, 2, \ldots, n$ is divisible by n. An integer number s is said to be *n*-rough if $s = a_1^2 + a_2^2 + \cdots + a_n^2$, where each $a_i, i = 1, 2, \ldots, n$ is not divisible by n. Find all positive integers n for which any n-smooth number is n-rough number.

Solution: Answer: All positive integers except 1,2 and 4.

A positive integer n is said to be *good* if any n-smooth number is n-rough number. We first show that if n is good, so is any multiple of n. Let m = nk and x_1, x_2, \ldots, x_m be integers such that $m|x_i$ for all $1 \le i \le m$. Then since $n|x_i$ for all $1 \le i \le m$ and n is good, there exist integers y_1, y_2, \ldots, y_m such that

$$\sum_{i=nl+1}^{n(l+1)} x_i^2 = \sum_{i=nl+1}^{n(l+1)} y_i^2$$

for all $0 \leq l \leq k-1$ and $n \nmid y_i$ for all $1 \leq i \leq m$. Therefore we obtain that

$$\sum_{i=1}^{m=nk} x_i^2 = \sum_{i=1}^{m=nk} y_i^2$$

and $m = nk \nmid y_i$ for all $1 \leq i \leq m$.

Next we show that all positive odd integers are good.

Lemma: Let n be a positive odd integer and x_1, x_2, \ldots, x_n be integers with at least one of them is not divisibly by n. Then there exist integers y_1, y_2, \ldots, y_n such that none of them is divisible by n and

$$\sum_{i=1}^{n} (nx_i)^2 = \sum_{i=1}^{n} y_i^2.$$

Proof: Without loss of generality we may assume that $n \nmid x_1$. Let $X = 2 \sum_{i=1}^n x_i$. If $n \mid X$, then replace x_1 by $-x_1$. As $n \nmid x_1$ and n is odd, $n \nmid 4x_1$ and hence we may assume that

then replace x_1 by $-x_1$. As $n \nmid x_1$ and n is odd, $n \nmid 4x_1$ and hence we may assume that $n \nmid X$. Then by the following identity

$$\sum_{i=1}^{n} (nx_i)^2 = \sum_{i=1}^{n} (X - nx_i)^2$$

letting $y_i = X - nx_i$ for all $1 \le i \le n$ works.

For a positive odd integer n, if a positive integer a is sum of squares of n integers with each of them is divisible by n, then there exist integers x_1, x_2, \ldots, x_n and a positive integer r such that $a = \sum_{i=1}^{n} (n^r x_i)^2$ and $n \nmid x_i$ for some $1 \le i \le n$. Applying the lemma r times n - n

we can find integers y_1, y_2, \ldots, y_n such that $a = \sum_{i=1}^n y_i^2$ and $n \nmid y_i$ for all $1 \le i \le n$.

Next we show that 8 is good. Let a be positive integer which is sum of squares of 8 integers with each of them is divisible by 8. Then 64|a, hence $a \ge 64$ and $a = 1^2 + 4^2 + 4^2 + 4^2 + x_1^2 + x_2^2 + x_3^2 + x_4^2$ for some integers x_1, x_2, x_3, x_4 by Lagrange's four-square theorem. Note that $x_1^2 + x_2^2 + x_3^2 + x_4^2 \equiv 7 \pmod{8}$ and the only way to get 7 as sum of four quadratic residues in $(mod \ 8)$ is 1+1+1+4. Therefore, $8 \nmid x_i$ for all $1 \le i \le 4$.

Finally, 4 is not good since n-smooth number $32 = 4^2 + 4^2 + 0^2 + 0^2$ is not n-rough. Therefore, 1 and 2 are also not good numbers.