

Bilkent University Department of Mathematics

Problem Of The Month

September 2021

Problem:

There are 777 points located on a circle ω each coloured into one of the colours $1,2, \ldots, k$. For each of these points and for each colour $1 \leq r \leq k$ there exists an arc of ω containing this point such that at least half of the points located on this arc are r coloured. Find the maximal possible value of k.

Solution: Answer: 3.

The colouring of each point into one of three colours such that any three consecutive points ate differently coloured satisfies conditions.

Let us show that $k \leq 3$. Each arc will be represented by its extreme points: the arc containing points A, B, \ldots, Z in clockwise order will be denoted by (A, Z). For a colour r and a point A not coloured r let $l_{A}(r)=(B, C)$ be the arc satisfying the condition with the smallest number of points on it.

Claim 1. If $l_{A}(r)=(B, C)$ then either $(B, C)=(B, A)$ or $(B, C)=(A, C)$.
Assume the contrary. Let the $\operatorname{arc}(B, A)$ contains m points and b of them are coloured r. Let the $\operatorname{arc}(A, C)$ contains n points and c of them are coloured r. Then $\frac{b}{m}<\frac{1}{2}, \frac{c}{n}<\frac{1}{2}$ and we readily get $2 b \leq m-1,2 c \leq n-1$. Therefore,

$$
2 b+2 c \leq m+n-2<m+n-1 \text { and consequently } \frac{b+c}{m+n-1}<\frac{1}{2}
$$

which contradicts with the definition of $l_{A}(r)=(B, C)$.

Now without loss of generality suppose that for a colour r and a point A not coloured r $l_{A}(r)=(A, C)$. By the definitions, C is r coloured.

Claim 2. Let the $\operatorname{arc}(A, C)$ contains n points and c of them are coloured r. Then $\frac{c}{n}=\frac{1}{2}$. Assume the contrary: $\frac{c}{n}>\frac{1}{2}$. Then $2 c>n$ and $2 c \geq n+1$ and herewith

$$
2 c-2 \geq n-1 \text { ve } \frac{c-1}{n-1} \geq \frac{1}{2}
$$

which contradicts with the minimality of (A, C).
Claim 3. For a colour r and points A and $B(A \neq B)$ not coloured r let $l_{A}(r)=(A, C)$ and $l_{B}(r)=(B, D)$. Then $C \neq D$.

Assume the contrary: $C=D$. Without loss of generality suppose that $B \in(A, C)$. When we move from A in clockwise direction let T be the last point before B. By Claim 2 , the ratios of points coloured r in both $\operatorname{arc} A C$ and $\operatorname{arc} B C$ are equal to $\frac{1}{2}$. Therefore, the ratio of of points coloured r in (A, T) also is equal to $\frac{1}{2}$, which contradicts with the minimality of (A, C).

Let $k>3$. Then there is a colour r such that the number of points coloured r is at most $\lfloor 777 / 4\rfloor=194$. For each point A not coloured r by Claim $1 l_{A}(r)$ is either (F, A) or (A, E), where points E and F are coloured r. By Claim 3, any point E coloured r can be the endpoint of at most two such arcs. Since there are at least $583>2 \cdot 194$ points not coloured 1 we get a contradiction. Done.

