Bilkent University Department of Mathematics

Problem Of The Month

July-August 2021

Problem:

Find all real numbers c for which there exists a non-constant function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(x-f(y))=f(x-y)+c(f(x)-f(y))
$$

for all real numbers x and y.

Solution: Answer: $c=0$.
For $c=0$ the function $f(x)=x$ satisfies the conditions.
Suppose that $c \neq 0$. By taking $x=y$ in the main equation we get

$$
\begin{equation*}
f(y-f(y))=f(0), \forall y \in \mathbb{R} \tag{1}
\end{equation*}
$$

By inserting $y-f(y)$ instead of y in the main equation and by (1) we get

$$
f(x-f(0))=f(x-y+f(y))+c(f(x)-f(0)), \forall x, y \in \mathbb{R} .
$$

By taking $y=0$ in the main equation we get

$$
f(x-f(0))=f(x)+c(f(x)-f(0)), \forall x \in \mathbb{R}
$$

Last two identities yield

$$
f(x-y+f(y))=f(x), \forall x, y \in \mathbb{R}
$$

By taking $y=x$ in the last identity we get

$$
\begin{equation*}
f(f(x))=f(x), \forall x \in \mathbb{R} \tag{2}
\end{equation*}
$$

By inserting $f(y)$ instead of y in the main equation and by (2) we get

$$
f(x-f(y))=f(x-f(y))+c(f(x)-f(y)), \forall x, y \in \mathbb{R}
$$

and consequently

$$
c(f(x)-f(y))=0, \forall x, y \in \mathbb{R}
$$

Therefore, for $c \neq 0$ there is no non-constant function satisfying the conditions.

