

Bilkent University
Department of Mathematics

Problem Of The Month

June 2021

Problem:

Find all positive integers n for which

$$
\frac{20 \cdot 5^{n}-2}{3^{n}+47}
$$

is an integer number.

Solution: Answer: There is no n.
If n is even then $3^{n}+47=(4-1)^{n}+47$ is divisible by 4 , but $20 \cdot 5^{n}-2$ is not, a contradiction.
Suppose that $n=2 k+1$. Since $20 \cdot 5^{n}-2$ is not divisible by $5,3^{n}+47$ is also not divisible by 5 . Therefore, $3^{2 k+1}+47 \equiv(-1)^{k} \cdot 3+2 \not \equiv 0(\bmod 5)$ and k is also odd: $n=4 l+3$. Then $20 \cdot 5^{n}-2=100 \cdot 5^{4 l+2}-2$. Now since $100 \cdot 5^{4 l+2}$ is a perfect square, 2 should be a quadratic residue modulo p for any odd prime divisor of $20 \cdot 5^{n}-2$. It is well known that in this case $p \equiv \pm 1(\bmod 8)$. Consequently, any odd prime divisor q of $3^{n}+47$ also have a form $q= \pm 1(\bmod 8)$. Now since $3^{n}+47=3^{4 l+3}+47=81^{l} \cdot 27+47 \equiv 10(\bmod 16)$ we get $\frac{3^{n}+47}{2}=8 m+5$. This contradicts with the fact that $q= \pm 1(\bmod 8)$. We are done.

