Bilkent University
Department of Mathematics

Problem Of The Month

May 2021

Problem:

Find the greatest real number T satisfying

$$
T \leq \frac{a^{3}+b^{3}+c^{3}-3 a b c}{a b^{2}+b c^{2}+c a^{2}-3 a b c}
$$

for all positive real numbers a, b, c.

Solution: Answer: $T=\frac{3}{\sqrt[3]{4}}$.
Since the inequality is cyclic w.l.o.g. we assume that $\min \{a, b, c\}=c$. Then for some non-negative x and y we have $a=c+x, b=c+y$. In the new variables c, x, y
$a^{3}+b^{3}+c^{3}-3 a b c=(c+x)^{3}+(c+y)^{3}+c^{3}-3(c+x)(c+y) c=(3 c+x+y)\left(x^{2}-x y+y^{2}\right)$
$a b^{2}+b c^{2}+c a^{2}-3 a b c=(c+x)(c+y)^{2}+(c+y) c^{2}+c(c+x)^{2}-3(c+x)(c+y) c=\left(x^{2}-x y+y^{2}\right) c+x y^{2}$
Therefore, the inequality transfer to

$$
\begin{equation*}
(3-T)\left(x^{2}-x y+y^{2}\right) c+x^{3}+y^{3}-T x y^{2} \geq 0 \tag{1}
\end{equation*}
$$

for all positive c, x, y.
For $x=1, y=\sqrt[3]{2}$ and any $c>0$ the inequality (1) becomes

$$
\begin{equation*}
(3-T)(1-\sqrt[3]{2}+\sqrt[3]{4}) c+3-\sqrt[3]{4} T \geq 0 \tag{2}
\end{equation*}
$$

Let us show that if T satisfies (2) then $T \leq \frac{3}{\sqrt[3]{4}}$. On the contrary, suppose that $T>\frac{3}{\sqrt[3]{4}}$.

If $T>3$ then (2) is not held for any $c>0$. If $T<3$ then for

$$
c<\frac{\sqrt[3]{4} T-3}{(3-T)(1-\sqrt[3]{2}+\sqrt[3]{4})}
$$

(2) is not held. Thus, $T \leq \frac{3}{\sqrt[3]{4}}$.

Now let us show that for $T=\frac{3}{\sqrt[3]{4}}$ the inequality (1) holds. Since $T<3$ we have $(3-T)\left(x^{2}-x y+y^{2}\right) c \geq 0$ and the required inequality will follow from $x^{3}+y^{3} \geq T x y^{2}$ which in turn is a consequence of AM-GM inequality:

$$
x^{3}+y^{3}=x^{3}+\frac{y^{3}}{2}+\frac{y^{3}}{2} \geq \frac{3}{\sqrt[3]{4}} x y^{2}=T x y^{2} .
$$

We are done.

