Bilkent University Department of Mathematics

## Problem Of The Month

February 2021

## Problem:

Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence of integers with $a_{1}=1, a_{2}=2$ and

$$
a_{n+2}=a_{n+1}^{2}+(n+2) a_{n+1}-a_{n}^{2}-n a_{n}
$$

for all $n \geq 1$. We say that a prime number is good if it divides at least one term of this sequence.
a) Show that there exist infinitely many good prime numbers.
b) Find three not good prime numbers.

## Solution:

Let us define a sequence $\left(b_{n}\right)_{n=1}^{\infty}$ by $b_{1}=1$ and $b_{n+1}=a_{n}^{2}+n a_{n}$ for all $n \geq 1$. Then

$$
a_{n+2}-a_{n+1}=a_{n+1}^{2}+(n+1) a_{n+1}-a_{n}^{2}-n a_{n}=b_{n+2}-b_{n+1} .
$$

We also have $a_{1}=b_{1}=1$ and $a_{2}=b_{2}=2$. Hence, we conclude that $a_{n}=b_{n}$ for all $n \geq 1$. Then we get $a_{n+1}=b_{n+1}=a_{n}\left(a_{n}+n\right)$ for all $n \geq 1$. Assume that the set of all prime numbers dividing at least one element of the sequence are finite. Denote these primes by $p_{1}, p_{2}, \ldots, p_{k}$. Since $a_{n} \mid a_{n+1}$, we have $a_{n} \mid a_{m}$ for all $m \geq n$. This means that if $p_{i} \mid a_{n}$ for some $i, n$, then $p_{i} \mid a_{m}$ for all $m \geq n$. Therefore, there exists an index $N$ for which $p_{1} \cdot p_{2} \cdots p_{k} \mid a_{n}$ for all $n>N$. Take an index $\ell$ satisfying $\ell>N+1$ and $\ell \equiv 2\left(\bmod p_{1} \cdot p_{2} \cdots p_{k}\right)$. In this case, we get $a_{\ell}=a_{\ell-1}\left(a_{\ell-1}+\ell-1\right)$ and the expression $a_{\ell-1}+\ell-1$ is not divisible by $p_{i}$ for all $i=1,2, \ldots, k$. Since $a_{\ell-1}+\ell-1>1$ we obtain that $a_{\ell}$ should have a prime divisor different from $p_{1}, p_{2}, \ldots, p_{k}$, which is a contradiction.
b) We will show that the primes $3,5,19$ do not divide any term of $\left(a_{n}\right)_{n=1}^{\infty}$ and hence are not good primes. By using of $a_{n+1}=a_{n}\left(a_{n}+n\right)$ it can be readily shown that if for a given prime number $p$ and some integer $m$ we have $a_{m} \equiv a_{m+p}(\bmod p)$, then $a_{\ell} \equiv a_{\ell+p}$ $(\bmod p)$ for all $\ell \geq m$. Hence, after the index $m$, the sequence becomes periodic modulo $p$. Hence, if for some index $m, p \nmid a_{n}$ for all $n<m+p$, then we conclude that $p \nmid a_{n}$ for all $n$.

Let us consider the sequence $\left(a_{n}\right)$ modulo 3,5 and 19 and find $p$ and $m$ satisfying $a_{m} \equiv a_{m+p}(\bmod p)$ :
$a_{1}, a_{2}, a_{3}, a_{4} \equiv 1,2,2,1(\bmod 3)$ so $m=1, p=3$.
$a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6} \equiv 1,2,3,3,1,1(\bmod 5)$ so $m=1, p=5$.
$a_{1}, a_{2}, \ldots, a_{25} \equiv 1,2,8,12,2,14,14,9,1,10,10,1,13,15,17,12,13,10,14,6,4,5,2,12,14(\bmod 19)$
so $m=6, p=19$.
We are done.

