

Bilkent University
Department of Mathematics

Problem Of The Month

December 2020

Problem:

Let N be the total number of bijective functions

$$
f:\{1,2, \ldots, 2020\} \rightarrow\{1,2, \ldots, 2020\}
$$

satisfying $f(f(f(k)))=k$ for all $k=1,2, \ldots, 2020$. Show that N is divisible by 3^{336}.

Solution: Let $M(n)$ be the total number of bijective functions

$$
f:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}
$$

satisfying $f(f(f(k)))=k$ for all $k=1,2, \ldots, n$. It turns out that for $n>2$

$$
M(n+1)=M(n)+n(n-1) M(n-2) .
$$

Indeed, let $f:\{1,2, \ldots, n+1\} \rightarrow\{1,2, \ldots, n+1\}$ be a function satisfying the conditions. Then for $f(n+1)$ there are two options: either $f(n+1)=(n+1)$ or for some t and s $f(n+1)=t, f(t)=s$ and $f(s)=n+1$.

Readily $M(1)=1, M(2)=1$ and $M(3)=3$ and then by the recurrent formula $M(4)=$ $9, M(5)=21, M(6)=81$. Let us show that if $M(6 p-2), M(6 p-1), M(6 p)$ are divisible by 3^{a} then all terms $M(i)$ starting $i=6 p+3$ are divisible by 3^{a+1}. Indeed, if $M(6 p)=3^{a} K$ then $M(6 p+1)=3^{a} K+6 p(6 p-1) M(6 p-2)$ and $M(6 p+2)=$ $M(6 p+1)+(6 p+1)(6 p) M(6 p-1)$. Therefore, in $\left(\bmod 3^{a+1}\right)$ we have $M(6 p+3) \equiv$ $M(6 p+2)+(6 p+2)(6 p+1) M(6 p) \equiv 2 \cdot 3^{a}+3^{a} \equiv 0$. Similarly, $M(6 p+4), M(6 p+5)$ and hence all subsequent terms are divisible by 3^{a+1}. Now since $M(4), M(5)$ and $M(6)$ are divisible by 3 we get that $N=M(2020)=M(6 \cdot 336+4)$ is divisible by 3^{336}.

Note: The highest power of 3 dividing $M(2020)$ is 450 .

