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Problem:

Suppose that positive real numbers a;;, 7,7 € {1,2,...,2020} for each pair (7, ) satisfy

2020
a; ja;; = 1. For each ¢ = 1,...,2020 let ¢; = Z ar,;. Find the maximal possible value of
k=1
2020
Ci

=1

Solution: Answer: 1.
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Let ¢ = g —. If a;; =1 for all (¢,7) then ¢ = 1. Let us show that ¢ < 1. By Cauchy-
C,
j=1 "
Schwarz inequality we have
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for every ¢ and positive real numbers x4, ..., z,. Since a;;a;; = 1 for every 7 and j, letting

;= é in (1) yields
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for every i. By adding up the inequality in (2) for every i we obtain
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On the other hand, as
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inequality in (3) and equation (4) imply ¢ > ¢3. Then, as c is positive, we see that ¢ < 1.

Solution 2. We will prove the inequality by induction over n. For n = 2, let a; 2 = a,
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then o + . ~1+a + 151/ = 1. So the inequality holds with equality.

Suppose that the inequality holds for n = k: Z

< 1. We will prove it for n = k + 1.

Note that by Cauchy-Schwarz inequality, for any ¢,a,z € R we have (¢ + a)(? +1) >
(z+1)?
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Therefore, for any = we get
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Now by choosing x = Zle @ +1 We get
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