Problem Of The Month

November 2020

Problem:

Suppose that positive real numbers $a_{i, j}, i, j \in\{1,2, \ldots, 2020\}$ for each pair (i, j) satisfy $a_{i, j} a_{j, i}=1$. For each $i=1, \ldots, 2020$ let $c_{i}=\sum_{k=1}^{2020} a_{k, i}$. Find the maximal possible value of $\sum_{i=1}^{2020} \frac{1}{c_{i}}$.

Solution: Answer: 1.
Let $c=\sum_{j=1}^{n} \frac{1}{c_{j}}$. If $a_{i, j}=1$ for all (i, j) then $c=1$. Let us show that $c \leq 1$. By CauchySchwarz inequality we have

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{x_{j}^{2}}{a_{j i}} \geq \frac{\left(\sum_{j=1}^{n} x_{j}\right)^{2}}{\sum_{j=1}^{n} a_{j i}} \tag{1}
\end{equation*}
$$

for every i and positive real numbers x_{1}, \ldots, x_{n}. Since $a_{i j} a_{j i}=1$ for every i and j, letting $x_{j}=\frac{1}{c_{j}}$ in (1) yields

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{a_{i j}}{c_{j}^{2}} \geq c^{2} \frac{1}{c_{i}} \tag{2}
\end{equation*}
$$

for every i. By adding up the inequality in (2) for every i we obtain

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{a_{i j}}{c_{j}^{2}} \geq c^{2} \sum_{i=1}^{n} \frac{1}{c_{i}}=c^{3} \tag{3}
\end{equation*}
$$

On the other hand, as

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{a_{i j}}{c_{j}^{2}}=\sum_{j=1}^{n} \sum_{i=1}^{n} \frac{a_{i j}}{c_{j}^{2}}=\sum_{j=1}^{n}\left(\frac{1}{c_{j}^{2}} \sum_{i=1}^{n} a_{i j}\right)=\sum_{j=1}^{n}\left(\frac{1}{c_{j}^{2}} c_{j}\right)=\sum_{j=1}^{n} \frac{1}{c_{j}}=c \tag{4}
\end{equation*}
$$

inequality in (3) and equation (4) imply $c \geq c^{3}$. Then, as c is positive, we see that $c \leq 1$.

Solution 2. We will prove the inequality by induction over n. For $n=2$, let $a_{1,2}=a$, then $\frac{1}{c_{1}}+\frac{1}{c_{2}}=\frac{1}{1+a}+\frac{1}{1+1 / a}=1$. So the inequality holds with equality.
Suppose that the inequality holds for $n=k: \sum_{i=1}^{k} \frac{1}{c_{i}} \leq 1$. We will prove it for $n=k+1$. Note that by Cauchy-Schwarz inequality, for any $c, a, x \in \mathbb{R}$ we have $(c+a)\left(\frac{x^{2}}{c}+\frac{1}{a}\right) \geq$ $(x+1)^{2}$ or

$$
\frac{1}{c+a} \leq\left(\frac{x^{2}}{c}+\frac{1}{a}\right)(x+1)^{-2}
$$

Therefore, for any x we get

$$
\sum_{i=1}^{k} \frac{1}{c_{i}+a_{k+1, i}} \leq \sum_{i=1}^{k}\left(\frac{x^{2}}{c_{i}}+\frac{1}{a_{k+1, i}}\right)(x+1)^{-2} \leq \frac{x^{2}+\sum_{i=1}^{k} a_{i, k+1}}{(x+1)^{2}}
$$

Now by choosing $x=\sum_{i=1}^{k} a_{i, k+1}$ we get

$$
\sum_{i=1}^{k+1} \frac{1}{\sum_{j=1}^{k+1} a_{j, i}}=\sum_{i=1}^{k} \frac{1}{c_{i}+a_{k+1, i}}+\frac{1}{\sum_{j=1}^{k} a_{j, k+1}+a_{k+1, k+1}} \leq \frac{x^{2}+x}{(x+1)^{2}}+\frac{1}{x+1}=1
$$

