Problem Of The Month

September 2020

Problem:

Suppose that for some real number M and all real numbers x, y, z satisfying $0<x, y, z<1$

$$
\frac{x y z(x+y+z)+(x y+y z+z x)(1-x y z)}{x y z \sqrt{1-x y z}} \geq M .
$$

Find the maximal possible value of M.
Solution: Answer: 6.
By simple calculations, we obtain that

$$
S=\frac{x y z(x+y+z)+(x y+y z+z x)(1-x y z)}{x y z \sqrt{1-x y z}}=\sum_{\mathrm{cyc}} \frac{x-y z+\frac{1}{x}}{\sqrt{1-x y z}} .
$$

By AM-GM inequality, we get

$$
\sqrt{1-x y z}=\sqrt{x\left(\frac{1}{x}-y z\right)} \leq \frac{1}{2}\left(x-y z+\frac{1}{x}\right)
$$

or equivalently,

$$
\frac{x-y z+\frac{1}{x}}{\sqrt{1-x y z}} \geq 2
$$

The sum of three cyclic versions of the last inequality yields $S \geq 6$.
The equality holds when $x=\frac{1}{x}-y z, y=\frac{1}{y}-x z$ and $z=\frac{1}{z}-x y$ which gives $x=y=z=t$ where t is the unique real root of the equation $t^{3}+t^{2}=1$.

