# Bilkent University 

Department of Mathematics

## Problem Of The Month

July-August 2020

## Problem:

Let $A_{1} A_{2} A_{3} A_{4}$ be a circumscribed quadrilateral with the perimeter $p_{1}$ and with the sum of its diagonals $k_{1}$ and let $B_{1} B_{2} B_{3} B_{4}$ be a circumscribed quadrilateral with the perimeter $p_{2}$ and with the sum of its diagonals $k_{2}$. Given

$$
p_{1}^{2}+p_{2}^{2}=\left(k_{1}+k_{2}\right)^{2}
$$

prove that $A_{1} A_{2} A_{3} A_{4}$ and $B_{1} B_{2} B_{3} B_{4}$ are congruent squares.

## Solution:

Lemma. Let $A B C D$ be a convex quadrilateral. Then

$$
(A B+C D)^{2}+(B C+A D)^{2} \geq(A C+B D)^{2}
$$

and equality holds when $A B C D$ is a rectangle.
Proof: By Ptolemy's inequality

$$
A B \cdot C D+B C \cdot A D \geq A C \cdot B D
$$

and by parallelogram inequality

$$
A B^{2}+B C^{2}+C D^{2}+A D^{2} \geq A C^{2}+B D^{2}
$$

Therefore,

$$
\begin{gathered}
(A B+C D)^{2}+(B C+A D)^{2}=A B^{2}+B C^{2}+C D^{2}+A D^{2}+2(A B \cdot C D+B C \cdot A D) \\
\geq A C^{2}+B D^{2}+2 \cdot A C \cdot B D=(A C+B D)^{2}
\end{gathered}
$$

Equalities hold when $A B C D$ is a cyclic quadrilateral and a parallelogram. Therefore, in the equality case $A B C D$ is a rectangle.

Using the lemma, we have

$$
\left(A_{1} A_{2}+A_{3} A_{4}\right)^{2}+\left(A_{2} A_{3}+A_{1} A_{4}\right)^{2} \geq\left(A_{1} A_{3}+A_{2} A_{4}\right)^{2} .
$$

Since $A_{1} A_{2} A_{3} A_{4}$ is a circumscribed quadrilateral with perimeter $p_{1}$ we get

$$
p_{1}^{2}=2\left(A_{1} A_{2}+A_{3} A_{4}\right)^{2}+2\left(A_{2} A_{3}+A_{1} A_{4}\right)^{2}
$$

Since the sum of diagonal lengths is $k_{1}$, we get

$$
p_{1}^{2} \geq 2\left(A_{1} A_{3}+A_{2} A_{4}\right)^{2}=2 k_{1}^{2}
$$

Similarly, we obtain

$$
p_{2}^{2} \geq 2 k_{2}^{2}
$$

Finally, by Cauchy-Schwarz inequality, we get

$$
p_{1}^{2}+p_{2}^{2} \geq 2\left(k_{1}^{2}+k_{2}^{2}\right) \geq\left(k_{1}+k_{2}\right)^{2} .
$$

The condition given in the problem corresponds to the equality case of the last inequality. By the equality case of lemma, each quadrilateral is a rectangle. Since they are circumscribed quadrilaterals, they should be squares. By the equality case of Cauchy-Schwarz inequality, we need $k_{1}=k_{2}$ which shows that the side lengths of two squares are equal.

