Bilkent University Department of Mathematics

Problem Of The Month

January 2020

Problem:

Let $m=p_{1}^{d_{1}} p_{2}^{d_{2}} \cdots p_{k}^{d_{k}}$ be the prime decomposition of a positive integer m and the "derivative" function $f(n)$ be defined by

$$
f(m)=f\left(p_{1}^{d_{1}} p_{2}^{d_{2}} \cdots p_{k}^{d_{k}}\right)=d_{1} d_{2} \cdots d_{k} p_{1}^{d_{1}-1} p_{2}^{d_{2}-1} \cdots p_{k}^{d_{k}-1} .
$$

For a given positive integer L, the L "derivative" sequence is the sequence $\left\{a_{n}\right\}, n=$ $1,2, \ldots$ defined by $a_{1}=L$ and $a_{n+1}=f\left(a_{n}\right), n>1$.

We say that a sequence $\left\{a_{n}\right\}$ is not N repeating if $i \neq j, a_{i}=a_{j}$ implies that $\min (i, j)>$ N.

Prove or disprove that for each positive N there is a L "derivative" sequence which is not N repeating.

Solution: Answer: For each positive N there is a L "derivative" sequence which is not N repeating.

Let us define a sequence $\left\{b_{n}\right\}$ by $b_{1}=1, b_{k+1}=f\left(b_{k}\right)(N-k+1)$ for $k=2, \ldots, N-1$ and $b_{k+1}=f\left(b_{k}\right)$ for $k \geq N$.

If $\left\{b_{n}\right\}$ is not periodic, then for $b_{i} \neq b_{j}$ for all $i, j \geq N$ and for $L=f\left(b_{N}\right)$ the sequence $\left\{a_{n}\right\}$ is L "derivative" sequence which is not N repeating.

If $\left\{b_{n}\right\}$ is periodic then it contains finite number of distinct terms. Therefore, there is a prime number p such that no term of $\left\{b_{n}\right\}$ is divisible by p. Define a "derivative" sequence $\left\{a_{n}\right\}$ by $L=p^{N}$. Then $a_{n}=b_{n} p^{N-n+1}$ for $n=1, \ldots, N+1$ and $a_{n}=b_{n}$ for $n \geq N+2$. For $1 \leq i<j \leq N+1$ prime decompositions of a_{i} and a_{j} contain different number of p factors and for $i \geq N+2, a_{i}$ is not divisible by p. Therefore, $\left\{a_{n}\right\}$ is a L "derivative" sequence which is not N repeating.

