

Bilkent University
 Department of Mathematics

Problem Of The Month

Term: January 2020

Let $m=p_{1}^{d_{1}} p_{2}^{d_{2}} \cdots p_{k}^{d_{k}}$ be the prime decomposition of a positive integer m and the "derivative" function $f(n)$ be defined by

$$
f(m)=f\left(p_{1}^{d_{1}} p_{2}^{d_{2}} \cdots p_{k}^{d_{k}}\right)=d_{1} d_{2} \cdots d_{k} p_{1}^{d_{1}-1} p_{2}^{d_{2}-1} \cdots p_{k}^{d_{k}-1}
$$

For a given positive integer L, the L "derivative" sequence is the sequence $\left\{a_{n}\right\}, n=1,2, \ldots$ defined by $a_{1}=L$ and $a_{n+1}=f\left(a_{n}\right), n>1$.

We say that a sequence $\left\{a_{n}\right\}$ is not N repeating if $i \neq j, a_{i}=a_{j}$ implies that $\min (i, j)>N$.
Prove or disprove that for each positive N there is a L "derivative" sequence which is not N repeating.

