Bilkent University
Department of Mathematics

Problem Of The Month

December 2019

Problem:

Find the maximal value of

$$
8 a b c\left(\frac{1}{a^{2}+1}+\frac{1}{b^{2}+1}+\frac{1}{c^{2}+1}\right)-a-b-c
$$

where a, b and c are positive real numbers satisfying $a b+b c+c a \leq 1$.

Solution: The maximal value is $\sqrt{3}$ when $a=b=c=\frac{1}{\sqrt{3}}$.
We first observe that $a^{2}+1 \geq a^{2}+a b+b c+c a \geq 4 a \sqrt{b c}$ where the second inequality follows from AM-GM inequality. Therefore we have $2 \sqrt{b c} \geq \frac{8 a b c}{a^{2}+1}$. Summing this up with similar inequalities involving $b^{2}+1$ and $c^{2}+1$ yields

$$
8 a b c\left(\frac{1}{a^{2}+1}+\frac{1}{b^{2}+1}+\frac{1}{c^{2}+1}\right) \leq 2(\sqrt{a b}+\sqrt{b c}+\sqrt{c a}) .
$$

Therefore, in order to show that our expression is not greater than $\sqrt{3}$ we will show that

$$
\begin{equation*}
a+b+c+\sqrt{3} \geq 2(\sqrt{a b}+\sqrt{b c}+\sqrt{c a}) \tag{1}
\end{equation*}
$$

By $1 \geq a b+b c+c a$ and Cauchy-Schwartz inequality we get

$$
\begin{equation*}
\sqrt{3} \geq \sqrt{1+1+1} \sqrt{a b+b c+c a} \geq \sqrt{a b}+\sqrt{b c}+\sqrt{c a} \tag{2}
\end{equation*}
$$

By summing the inequalities $(\sqrt{a}-\sqrt{b})^{2} \geq 0,(\sqrt{b}-\sqrt{c})^{2} \geq 0,(\sqrt{c}-\sqrt{a})^{2} \geq 0$ we get

$$
\begin{equation*}
a+b+c \geq \sqrt{a b}+\sqrt{b c}+\sqrt{c a} \tag{3}
\end{equation*}
$$

Finally, (3) and (2) imply (1). We are done.

