

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

December 2019

Problem:

Find the maximal value of

$$8abc\left(\frac{1}{a^2+1} + \frac{1}{b^2+1} + \frac{1}{c^2+1}\right) - a - b - c$$

where a, b and c are positive real numbers satisfying $ab + bc + ca \le 1$.

Solution: The maximal value is $\sqrt{3}$ when $a = b = c = \frac{1}{\sqrt{3}}$.

We first observe that $a^2 + 1 \ge a^2 + ab + bc + ca \ge 4a\sqrt{bc}$ where the second inequality follows from AM-GM inequality. Therefore we have $2\sqrt{bc} \ge \frac{8abc}{a^2 + 1}$. Summing this up with similar inequalities involving $b^2 + 1$ and $c^2 + 1$ yields

$$8abc\left(\frac{1}{a^2+1} + \frac{1}{b^2+1} + \frac{1}{c^2+1}\right) \le 2(\sqrt{ab} + \sqrt{bc} + \sqrt{ca}).$$

Therefore, in order to show that our expression is not greater than $\sqrt{3}$ we will show that

$$a + b + c + \sqrt{3} \ge 2(\sqrt{ab} + \sqrt{bc} + \sqrt{ca}) \tag{1}$$

By $1 \ge ab + bc + ca$ and Cauchy-Schwartz inequality we get

$$\sqrt{3} \ge \sqrt{1+1+1}\sqrt{ab+bc+ca} \ge \sqrt{ab} + \sqrt{bc} + \sqrt{ca} \tag{2}$$

By summing the inequalities $(\sqrt{a} - \sqrt{b})^2 \ge 0, (\sqrt{b} - \sqrt{c})^2 \ge 0, (\sqrt{c} - \sqrt{a})^2 \ge 0$ we get

$$a + b + c \ge \sqrt{ab} + \sqrt{bc} + \sqrt{ca} \tag{3}$$

Finally, (3) and (2) imply (1). We are done.