

Bilkent University
Department of Mathematics

Problem Of The Month

May 2019

Problem:

Let $S=\{1,2, \ldots, 2019\}$ and $A_{1}, A_{2}, \ldots, A_{n}$ be subsets of S such that the union of any three of them is equal to S and the union of any two of them is not equal to S. Find the maximal possible value of n.

Solution: Answer: 64.
Assume that $n \geq 65$. Then there are at least $\binom{65}{2}=2080$ unordered pairs of subsets A_{i}, A_{j}. By conditions to each unordered pair A_{i}, A_{j} we can correspond an element $c(i, j) \in S$ such that $c(i, j) \notin A_{i} \cup A_{j}$. Since $2080>2019$ for some A_{k}, A_{l} and A_{p}, A_{q} we have $c(k, l)=c(p, q)$. Finally, since at least three of the indices k, l, p, q are distinct, the union of some three subsets is not equal to S, a contradiction.

Now let us give an example for $n=64$. There are $\binom{64}{2}=2016$ unordered pairs of distinct indices $i, j, 1 \leq i, j \leq 64$. Let us fix any one-to-one correspondence between the set of 2016 unordered pairs and the set $\{1,2, \ldots, 2016\}: A_{i}, A_{j} \leftrightarrow m(i, j)$. Starting with $A_{1}=A_{2}=\cdots=A_{64}=S$ for each $m=m(i, j) \in\{1,2, \ldots, 2016\}$ we remove the number m from both A_{i} and A_{j}. Since each number $m \in S$ is removed exactly from two subsets, the collection $A_{1}, A_{2}, \ldots, A_{64}$ will satisfy the conditions. Done.

