Bilkent University
Department of Mathematics

Problem Of The Month

March 2019

Problem:

Find the minimal possible value of $a b+b c+a c$ over all positive numbers a, b, c satisfying

$$
\begin{gathered}
a b c=1, \quad a+b+c=5 \text { and } \\
(a b+2 a+2 b-9)(b c+2 b+2 c-9)(c a+2 c+2 a-9) \geq 0
\end{gathered}
$$

Solution: Answer: 5.
Note that

$$
a b+2 a+2 b-9=\frac{1}{c}+2(5-c)-9=\frac{1}{c}-2 c+1=\frac{1}{c}(2 c+1)(1-c) .
$$

The similar formulas are held for $b c+2 b+2 c-9$ and $c a+2 c+2 a-9$. Therefore, $(a b c=1)$
$(a b+2 a+2 b-9)(b c+2 b+2 c-9)(c a+2 c+2 a-9)=(2 a+1)(2 b+1)(2 c+1)(1-a)(1-b)(1-c) \geq 0$.
Now since $(2 a+1)(2 b+1)(2 c+1)>0$, we get

$$
(1-a)(1-b)(1-c)=-a b c-a-b-c+a b+b c+b c+1 \geq 0
$$

Thus, $a b+b c+a c \geq 5$. The equality holds at $(a, b, c)=(1,2-\sqrt{3}, 2+\sqrt{3})$.

