Bilkent University Department of Mathematics

## Problem Of The Month

October 2018

## Problem:

Let $a_{0}, a_{1}, \ldots, a_{100}$ and $b_{1}, b_{2}, \ldots, b_{100}$ be two real sequences such that for each $n=0,1, \ldots, 99$

$$
a_{n+1}=\frac{a_{n}}{2}, \quad b_{n+1}=\frac{1}{2}-a_{n} \quad \text { or } \quad a_{n+1}=2 a_{n}^{2}, \quad b_{n+1}=a_{n}
$$

holds. Given $a_{100} \leq a_{0}$, find the maximal possible value of $b_{1}+b_{2}+\cdots+b_{100}$.

Solution: The answer is 50 .
If $a_{0}<0$ then clearly $a_{100}>a_{0}$. If $a_{0}=0$, then $b_{n} \in\{0,1 / 2\}$ and hence $S=b_{1}+b_{2}+\cdots+$ $b_{100} \leq 50$. Assume that $a_{0}>0$. In this case all terms of the sequence $\left(a_{n}\right)$ are positive. We have

$$
\left(a_{n}-\frac{a_{n-1}}{2}\right)\left(a_{n}-2 a_{n-1}^{2}\right)=0 \quad \text { and } \quad a_{100} \leq a_{0}
$$

This equation can be expressed as

$$
\begin{equation*}
\frac{a_{n}}{a_{n-1}}+\frac{a_{n-1}^{2}}{a_{n}}=2 a_{n-1}+\frac{1}{2} \tag{1}
\end{equation*}
$$

Side by side sum of the equation (1) for $n=1,2, \ldots, 100$ yields

$$
\begin{equation*}
\sum_{n=1}^{100} \frac{a_{n}}{a_{n-1}}+\sum_{n=1}^{100} \frac{a_{n-1}^{2}}{a_{n}}=2 \sum_{n=1}^{100} a_{n-1}+50 \tag{2}
\end{equation*}
$$

By using of Cauchy-Schwarz inequality we have

$$
\sum_{n=1}^{100} \frac{a_{n-1}^{2}}{a_{n}} \geq \frac{\left(a_{0}+a_{1}+\cdots+a_{99}\right)^{2}}{a_{1}+a_{2}+\cdots+a_{100}} \geq a_{0}+a_{2}+\cdots+a_{99}=\sum_{n=1}^{100} a_{n-1}
$$

Therefore, by (2) we get

$$
\sum_{n=1}^{100}\left(\frac{a_{n}}{a_{n-1}}-a_{n-1}\right) \leq 50
$$

The problem conditions imply that $\frac{a_{n}}{a_{n-1}}-a_{n-1}=b_{n}$ for all $n=1,2, \ldots, 100$. Thus, we get $S \leq 50$.

The equality holds when $a_{i}=1 / 2, \quad i=0,1, \ldots, 100, \quad b_{i}=1 / 2, \quad i=1,2, \ldots, 100$.

