

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

Term: October 2018

Let $a_0, a_1, \ldots, a_{100}$ and $b_1, b_2, \ldots, b_{100}$ be two real sequences such that for each $n = 0, 1, \ldots, 99$

$$a_{n+1} = \frac{a_n}{2}, \quad b_{n+1} = \frac{1}{2} - a_n \quad \text{or} \quad a_{n+1} = 2a_n^2, \quad b_{n+1} = a_n$$

holds. Given $a_{100} \leq a_0$, find the maximal possible value of $b_1 + b_2 + \cdots + b_{100}$.