

Bilkent University
 Department of Mathematics

Problem Of The Month

Term: October 2018

Let $a_{0}, a_{1}, \ldots, a_{100}$ and $b_{1}, b_{2}, \ldots, b_{100}$ be two real sequences such that for each $n=0,1, \ldots, 99$

$$
a_{n+1}=\frac{a_{n}}{2}, \quad b_{n+1}=\frac{1}{2}-a_{n} \quad \text { or } \quad a_{n+1}=2 a_{n}^{2}, \quad b_{n+1}=a_{n}
$$

holds. Given $a_{100} \leq a_{0}$, find the maximal possible value of $b_{1}+b_{2}+\cdots+b_{100}$.

